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Abstract

Well-known matching constraints for points and lines in muliple images are
necessary but not sufficient condition for the existence of real structure and
cameras, underlying the image correspondences. To obtain sufficient condi-
tions, the following additional constraints must be imposed: positive scales,
the existence of a plane at infinity not intersecting the scene, and the exis-
tence of handedness preserving cameras. We present modifications of the
well-known matching constraints and also some new constraints, taking into
account some of this additional knowledge. Not only conventional but also
central panoramic cameras are naturally described. To achieve this, we have
generalized and simplified Hartley’s ch(e)irality theory by formulating it in
the language of oriented projective geometry and Grassmann tensors.

1 Introduction

In' multiple view geometry for 3D computer vision [2], projective spd&e ; and pro-

jective geometry are used as a theoretical background for the theory and algorithms. It has
been shown [6, 4] thatriented projectivespacel;_; (called spherical in mathematics)

and the corresponding geometry are more natural to model the real Euclidean world than
a projective one. 17,1, concepts like orientation of lines and planes, convex hull of
points, etc., are well defined. Multiple view geometry can be easily augmented to live
in oriented projective rather than projective space as follows: two homogeneous vectors,
matrices or tensors representing points, lines, planes, conics, cameras, multifocal tensors,
etc. are considered to represent the same geometrical object iff they are equal up to a
positive rather than non-zero scale. Thus, the vest@sd—x represent different points.

The contribution of this paper is to augment multiple view matching constraints [2]
with orientation. Using oriented projective geometry enables the consistent use of addi-
tional knowledge, available implicitly in almost every 3D computer vision task. Given
matched correspondences in images, this knowledge is expressed by the following con-
straints:

Orientation consistency. Overall signs of vectors, matrices or tensors representing geo-
metrical objects must not be changed and all scales must be positive. This says that
we are in an oriented projective space rather than in a projective one.
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1999-29017 OMNIVIEWS), the Czech Ministry of Education (MSMT KONTAKT 2001/09), and the Grant
Agency of Czech Republic (102/01/0971). We also thank Bill Triggs for the discussion which has helped
clarifying many ideas present explicitly or implicitly in this paper.
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Scene affinity. There exists a plane (plane at infinity) in the scene such that all scene
points are in front of it. This says that the true structure underlying the image
correspondences is affine rather than oriented projective or projective.

Cameras preserve handednessvery often the relation of handedness of image coordi-
nate systems and the handedness of the true scene coordinate system is known (it
can be either equal or opposite). The cameras are required to preserve this relation.

Directionality of conventional cameras. For conventional cameras, there is a line (line
at infinity) in each image such that all image points are on its positive side. How-
ever, no such line exists for (central) panoramic cameras.

The paper builds on three works. The first is Stolfi's theory of oriented projected
geometry of flats in arbitrary dimension [6]. Its usefulness for computer vision commu-
nity has been noticed by Laveau and Faugeras [4]. However, extension to multiple view
geometry is not straightforward since some concepts (e.g., of the camera) are missing.

The second is the excellent treatment of geometry of projective reconstruction and
matching constraints due to Triggs [8]. Algebra of Grassmann tensors is used as the tool
to represent the geometry of flats and projections. In fact, this algebra represents exactly
the abstract algebra Stolfi uses as the language of oriented projective geometry: flats are
represented by Grassmann tensors, and operations join and meet by antisymmetrizing
over respectively contravariant and covariant indices. The orientation is distinguished by
an overall sign of a tensor. However, geometrical insights due to considering orientation
are not discussed explicitly in the paper, even if the author is aware of them. Personal
communication with Bill Triggs [1] has helped us to clarify some important ideas.

The third is Hartley’s theory of ch(e)irality and quasi-affine reconstruction [3, 2]. To
our opinion, the existence of quasi-affine reconstruction is the most important result due
to including the above constraints. However, the reasoning is done in projective geometry
rather than, more naturally, in oriented projective one. An independent less exhaustive
work on this topic is [10].

The paper is organized as follows. First, concepts and notation are introduced and
their relation to [6, 8, 3] stated. Then, a hierarchy of possible reconstructions from image
correspondences is presented, as the result of imposing the first, second and third of the
above constraints. The hierarchy is closely related to weak and strong realization and
quasi-affine reconstruction in [3, 2] but formulation in oriented projective space makes
it simpler and the ideas are expressed in pure geometrical terms, without refering to any
special coordinate system. The main part of the paper describes imposing the orientation
consistency and partially also scene affinity and camera handedness preservation to well-
known matching constraints in terms of multiple view tensors or joint image matrix [2].
Also entirely new matching constraints, as on oriented lines in two images, are presented.

2 Notation and concepts

As the paper is very closely related to the works [6, 8, 3], being familiar with them (espe-
cially with the first two) isessential to understand the papéWe use the same concepts
and symbols as in [6, 8], without explaining them here again for the lack of space.

The geometrical entities involved in our considerations are flats of oriented projective
spaced; or T3. The operations we need are as follows: taking antipode, join, meet, pro-
jective mapping, and generalized projective mapping. These are introduced and explained
in Stolfi's book [6].
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To represent these entities and operations, we use Grassmann algebra in terms of anti-
symmetric tensors. It is explained in [8] and we also use the same notation. This algebra
naturally represents oriented projective geometry as follows: (flat oframky_,, tak-
ing antipode, join, meet, projective mapping frafip_; to 7,1, generalized projective
mapping fromT,;_, to T, for e < d) are represented respectively hirdimensional
r-index contravariant Grassmann tenseyantisymmetrizing over contravariant indices,
antisymmetrizing over covariant indices of dual tensor, transforming contravariant indices
by d x d full rank matrix, transforming contravariant indices by d full rank matrix).

Any geometric object like a scene or image flat, camera matrix, multiple view tensor,
etc., is oriented. All tensors differing just by an overadisitivescale represent the same
geometric object, while multiplying it by a negative scale yields the antipodal object.
Equality up to a non-zero and positive scale is denoted respectivelydnd=.

Scene spaces F3 Euclidean 3-space but, since just affine rather than also metric
properties of the scene are of interest in the paper, we considerdit affine 3-space.

Az is isomorphic to the set of points @k that are in front of a certain plane (plane at
infinity) Q [6]. This set is denoted by ordered pdifs;,2) = A3 and represented by
(H*, Q) = {x* € H*| Q,x* > 0}, wheredimH* = 4.

Sceneis a set of points fron(75,Q2) and flats of73 of rank higher than 1. It is
represented by the séx?, x2, x2%¢| Q,x% > 0} where the symbolg?, x?°, andx{*
denote respectively the-th scene pointyn-th scene line, anétth scene plane. Since it
is not possible to tell relative orientation (i.e., whether it is in front of or behind) of a flat
of rank higher than 1 w.r.tQ2 (such flat always intersecf3), there is no constraint like
Q,x2 > 0 for x2° orx#t¢. Note,n, m, [ are not meant as tensor indices but rather just to
distinguish different flats, in other words, there is no vector spaceHike

By camera, we meacentral linearcamera, represented by a linear mapping in ho-
mogeneous coordinates. We distinguistmnoramicanddirectionalcameras and images.

The field of view of a panoramic camera3it0® at least in one plane containing its center

[5]. Directional camera sees only scene points in front of a certain plgipéanar retina)
through its center. It has the front range and inobservable back range [4]. There is no such
plane for a panoramic camera, its retina is topologically a sphere. Conventional (e.g. TV
or photographic) cameras are directional. Note, not every camera is central (i.e., its rays
do not intersect in a single scene point) [5] and not every central camera is linear (i.e., the
scene-to-image mapping is not linear in homogeneous coordinates) [9].

Image spaces Ty oriented projective 2-space, being in fact the set of directions in
Fs5 or the surface of a sphere ii;. It is represented b$(“ of dimension3. Multiple
image spaces are distinguished by indeand denoted a&y and+“*. Image space of
a directional cameras a restriction ofl; to affine 2-spacel; = (75, 7), represented by
the pair(H4,T14) = {x* € HA|TIax” > 0}. I1,4 is the image line at infinity. Itis a
projection of the planar retind, represented by, = P/ TI 4.

Imageis a set of flats fronfs. It is represented by the s}, x18 xABC} where
the symbols denote respectively thah image point;n-th image line, and-th image
plane. Note, ifl; (unlike in P) it is meaningful to consider also image planes because
there are two oppositely oriented image planes in an imBjrectional imageis the set
{xa,xAB x{"BC|TI4x* > 0}. Like in scene space, there is no constraint on relative
orientation of image lines and planes w.IL 4.

Camerais a generalized projective mapping [6] from scene space to image space. It
is represented by a full-rark x 4 matrix PZ'. Directional camerais a pair(P2 T 4).



Camera centee“ is the null space of the camera mapping with uniquely chosen orienta-
tion, e® = 5P PP e s pc [8]. Projection of the centes; of cameraP;'» by the
cameraP 2 is epipolee;! = Pief.

We assume in the paper that the true cameras underlying the image correspondences
preserve handednesdhis can be assumed without loss of generality because if some
of the true cameras reverses handedness, it suffices to mirror its image coordinate sys-
tem prior to computations. The camera’s handedness preserving property is a product
of several other properties: (i) the way the camera solves visibility ('from the center’ or
‘towards the center’), (ii) whether images are direct or mirrored, and (iii) signatures of
images and scene epsilon tensors [1]. Detailed explanation is rather subtle and omitted
due to the lack of space.

Preserving handedness in fact means that the camera 'sees the positive Qide of
PAPEPI Qe =~ cABC This in turn means that its center lies in fradt Q,e® > 0.

Note, the orientation of the null spaeé of P2 is chosen so that for any plasé® it is
(PAPEPIxe =~ e4BC) & (x,e > 0).

3 Hierarchy of reconstructions

Let {x2*, x/xBr xPeCi pe projections ofV points, M lines andL planes ink
images (<n<N,1<m<M,1<I<L,1<k<K). These image correspondences
can originate from conventional or panoramic cameras, they are assumed to be correctly
oriented, yet known only up to a positive scales. The correspondences are matched,
thus e.g.x{‘1 andxf‘2 are projections of a single scene point in image 1 and 2. Itis
assumed that a true reconstruction (i.e., cameras and structure) exists, projecting to the
correspondences.

We add several more steps into the well-known [2] hierarchy projective—affine—metric
reconstruction. First, we define

Definition 1 Projective reconstruction from the set of imadeg?+, x/ix B xAsBrCi)
is a set{P*, x, x% x#c} such thatx* ~ Parx?, x4rBr ~ PAPPixab and
x Ak BrCr o AP PP Crxabe,

Oriented projective reconstruction frofx/, xAx Bk x;+BrCk Y is defined similarly
except that the symbaots are replaced by-=.

Although stronger than projective reconstruction, oriented projective reconstruction
says nothing about scene affinity or handedness preserving cameras. These constraints
can be imposed on it, separately or simultaneously, thus obtaining more steps in the hier-
archy of reconstructions. This is described in Section 5.

The strongest reconstruction that can be obtained knowing only that the true scene is
affine and the true cameras preserve handedness is described by

2practically, the orientations can be measured in images as followpoffis in conventional camerathe
orientations of all points is given by the fact that they all lie in front of the image line at infifliyx* > 0.
If TT, = (0,0,1) as usual, it means that the last coordinates fare positive. Irpanoramic camerasan
image point and its antipode are clearly distinguished by their very design — e.g., for a camera consisting of a
curved mirror and a conventional camera, a point and its antipode are two different points in the image of the
mirror in the conventional camera. Orientationsliobs can be obtained during the line detection algorithm
from the direction of the intensity gradient orthogonal to the line. Even if this direction can swap when lighting
conditions change severely, it can be expected highly invariant.



Theorem 1 True scene, cameras and plane at infinity are in the set of all reconstructions
[P xa xab xabe .} satisfying: (i) {P2+,x2,x2 x7*¢} is an oriented projective

m m

reconstruction fron{x 2%, x/Br xAxBrC (i) Q,x% > 0, and (jii) Q,ef > 0.

4 Imposing oriented projective reconstructibility

Well-known matching constraints in terms of multilinear relations are (up to singularities)
equivalent only to the existence of a projective reconstruction. This section shows how
the condition on the existence of an oriented projective reconstruction can be imposed on
matching constraints on flats in multiple images.

4.1 Points in two images

Let x* be a scene point arl@1, P42 two cameras. It is easy to verify (also Table 2 in
[8]) thatef2xP>¢ 4, 5., = x“1F¢, ¢, (in familiar matrix notation [2]¢’ x x/, = Fx,,),
whereFc, o, = ca,p,c, PAPP eedplaPB2c 1 o is the fundamental matrix and
x4r = PArx®, Hence (see Table 1 in the full version of [8], and also [9])

Theorem 2 The image points* in two imagesk = 1, 2) possess an oriented projec-

tive reconstruction if and only if there exists a matfhgjqc2 of rank 2 and a non-zero

vectore? such thatF ¢, ¢,e$? = 0¢, and for alln itis ]2xP2e 4, 5,c, = x$1F e, 0y

Figure 1: Constraint on points (left subfigure) and lines (right subfigure) in two images.

The geometric meaning of the theorem is shown in Fig. 1 on the left. The oriented ray
denoted byL in the figure is given bxk., = xAlBlP;l“leBl. However,L is also the join
of the camera cent&r and the scene poiX. L, C and X are projected into the second
image ad’, ¢’ andz’. The condition requires thétis the join ofe’ andz’.

4.2 Linesintwo images

Let x“* be a scene line anB21, P> two cameras. It can be shown thaf,e;* +
x4,e7? = 0 (in matrix notation [2]le + '’ = 0), wherexc, = PAsP*xeArBrCr

are projections of the scene line. We have proven (the proof omitted for the limited space)

Theorem 3 The set{x"; ,x’;,} of NV oriented image lines in two images possesses an
oriented projective reconstruction if and only if there exist arbitrary non-zero 3-vectors
e;" andei” such that for every: it is sgn(x’ e3') + sgn(x% ef?) = 0. If this is
satisfied for some'* ande?'2, it is also satisfied foe;* ande:'? equal to the epipoles

of the image pair.

The geometrical interpretation of Theorem 3 is shown in the right subfigure of Fig. 1.
Relative orientation of the scene lidew.r.t. the lineCC’ is observed in each image as
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relative orientation of the image lidgesp.l’ w.r.t. the epipole: resp.¢’. The constraint
requires consistency of these two relative orientations in images.

The theorem can be formulated also as follows. Let us allow arbitrary pair-wise
changes of image line orientations, meaning in fact changing the orientations of the un-
derlying scene linesA set of image line pairs has consistent orientations if and only if
the line orientations can be pair-wise reversed such that there exists a point in each im-
age lying on a single side of each line Fig. 2, two pair-wise changes have been done,
achieving the situation when the epipole is on a single side of each line in each image.
Note in the final image pair, the image lines rotate around each epipole, meaning that the
scene lines merely rotate around the line connecting the camera centers.

step 1 step 2

initial image pair final image pair

Figure 2: Sequence of pair-wise changes of line orientations, finished by the situation in
whiche is on a single (right-hand) side of each line in the first image,cailon a single
(left-hand) side of each line in the second image.

If the epipoles are known, testing for the condition in Theorem 3 is easy. Not given
the epipoles, it might seem that the condition could be tested by linear programming.
But it is not so, we search simultaneously for epipoles and for reversions of orientations
of underlying scene lines. We have not found any polynomial algorithm yet. If it were
available, the epipoles could be approximately located from oriented lines in two images.

If the epipoles are known (up to orientations), the minimum number of line pairs not
satisfying the condition in Theorem 3 is obviously two. What is the minimal number of
lines not satisfying this condition famknown epipoles

4.3 Lines in three images

The well-known bilinear relation for line transfer from two images to the third ane,=

T/ x4, % 4,, cannot yield correct orientations of the lirg, for the following simple

reason. If the signg 4, andx,4, are changed simultaneously,, remains unchanged.

However, this is incorrect because reversing orientation of the first two image lines means

reversing the underlying scene line, so the third image line must reverse too. Clearly, the

correct line transfer formula must be a relation more complicated than a bilinear form.
The orientation consistent formula for reconstruction of a scene line from two im-

age lines can be shown to be, = (er*xp,) 'xa,x4, P P Sincee*xp, +

la
e2’31x31 = 0, the scalar in parentheses could be alaaflel, the complete symme-

try cannot be achieved. Ignoring singularities, we obtain the correct transfer equation by
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simply projecting the scene line,, to a third imagex., = (e{*xp,) "'x4,x4, T} "2,
whereT}! 42 = PP 2pLap{ocabede , p o is the trifocal tensor. Hence
Theorem 4 For N corresponding lines’;, in three images it holde?2x?, x7 =
k 2 3
X" x4 T42, whereT!“ is the trifocal tensor.
1 2 3 3

The situation is shown in Fig. 3 on the left. Having changed orientation of the scene
line L, all three image lineg I, I”” must change their orientations too.

Iﬁc

Figure 3: Constraint on lines (left subfigure) and points (right subfigure) in three images.

4.4 Points in three images

The well-known constraink: 4, 5, ¢, x*2¢ 4, 5,0, Te. *x = 03, 5, [2], allowing

point transfer via trifocal tensor, does not determine the orientatiotf of The orien-

tation could be determined using pairs of images and Theorem 2. However, we present
a different constraint, which is inherent to a triplet of images. x&be a scene point.
Then it can be shown that

bocad Ay B1 C As B As B .C:
XaelegeSEGde =x""e, 1e3 ‘eaBio; =X ey zel 26A2B202 =x"’e 362 381433303
or, in matrix language|X, C!,C?,C?] = [x!,el,el] = [x2,e3,e}] = [x3,e}, €],

where[x, y, z] denotes the determinant of the matrix with colunng, z. Hence
Theorem 5 Letx?+, k = 1,2, 3, possess an oriented projective reconstruction. Then

n

there are image lines 4, such thattAkef“"‘ = 0 for k,i = 1,2,3,i # k, (i.e., the

K3
epipoles lie on the lines) anskn(t 4, x21) = sgn(ta,x22) = sgn(t4,x:2) for all n.
Geometrical interpretation is shown in Fig. 3 on the right. Relative orientation of the
trifocal planeCC’C”, represented bg{ebeSe peq, W.ILL. the scene poink is observed
in each image as relative orientation of the line joining the two epipoles w.r.t. the image
point.

4.5 Points in joint image matrix

Recall [8] that projection of a scene poixt by K cameras can be viewed as projection
by a big3K x N joint camera matrixP¢ to a single3 K -dimensional image poif?¢x®,
where’H® is 3K -dimensionaljoint image space For multiple points measured in the
images with correct orientations it i§,x* = P¥x2, i.e., in matrix form,

aXns
p%xfh p}vxﬁl Pg‘l

: : = + |(x xR ) -
o )\ i
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Let thejoint image matrixon the left be denoted biy” x:*). This matrix must have rank
at most 4, which is the principle of projective reconstruction by factorization [7]. Clearly,

Theorem 6 Letx/* be N image points measured iii images with correct orientations.
An oriented projective reconstruction fragd'* exists if and only if there arg® > 0 such
that rank (pkx2*) < 4.

5 Imposing scene affinity and preserving handedness

Imposing scene affinity and handedness preserving cameras on matching constraints is
more difficult than imposing positive scales. We present some interesting results for points
in special situations.

Scene affinity can be imposed only on points (an oriented projective reconstruction
with all points in front ofQ2 is calledquasi-affingn [3, 2]) because one cannot say whether
an infinite line or plane lies in front 2. A meaningful constraint would be obtained
if they were considered as point sets rather than flats. However, requiring cameras to
preserve handedness is meaningful even for a reconstruction not containing any points.

5.1 Using camera directionality

Camera directionality is an additional knowledge implying the Theorems 7 and 8. These
theorems have been presented in [3, 2], we give here their more general and compact
form. They can be used to strengthen Theorems 2, 5 and 6.

Theorem 7 Let images<* of N points in K cameras have an oriented projective re-
construction and let at least one camera be directional. Then there is an affine scene
projecting tox:'* by some (not necessarily handedness preserving) cameras.

Proof. Knowing thatIT*x® > 0, let Q, be one of the image plan@$” or their convex
linear combination, which implieQ ,x* > 0. ]

It follows that if pointsx/* in multiple images possess an oriented projective recon-
struction and one or both cameras are directional, there is an affine scene projecting to
x, Thus, Theorems 2, 5 and 6 and directionality of one or more cameras imply the
existence of an affine scene projectingktgr by some (not necessarily handedness pre-
serving) cameras.

Theorem 8 Let imagesx* of N points in 2 cameras have an oriented projective re-
construction and let at least one camera be directional. Then there is an affine scene
projecting tox* by handedness preserving cameras.

Proof. Due to Theorem 7, there is an affine scene projecting:io, i.e., there exist
Q, such that©2,x2 > 0. The cameras must satisfg,e¢ > 0. In fact, condition
(©2.€9)(2,€%) > 0is sufficient because the ca®ge§ < 0 can be brought t2,ef > 0
by lettingx? — x% = HYx% andP# — P4 = PAH )2 for someH? with
negative determinant. IfQ2,P¢)(Q2,P%) < 0 and at least one camera is directional,
it is always possible to move the plafk, so that one of the camera centers becomes
separated from the other center and the scene points, as illustrated in Fig. 4. =

In other words, oriented projective reconstructibility and directionality of one or both
cameras are necessary and sufficient for the existence of a real scene and real cameras
underlyingx 4+ [9].



panoramic
camera

- €

directional
camera

scene

Q
Figure 4: Having two cameras, at least one of them directional, the directional camera
center can always be separated from the scene points and the second camera center by
plane.

5.2 Imposing affinity on points in joint image matrix

Recall Section 4.5. If all cameras are panoramic, Theorem 6 does not guarantee the
existence of an affine scene projectingstf. We present a constraint sufficient for the
existence of an affine scene (but not necessarily handedness preserving cameras).

The existence of an affine scene requires the existence of a plane at if¥ingtych
thatQ,x® > 0. Let Q, be a hyperplane in the joint image spd¢e satisfyingQ2,x* >
0. Then its preimage in the scer@, = Q,P¢, will satisfy 2,x* > 0. Hence

Theorem 9 Letx* (or equivalentlyx®) possess an oriented projective reconstruction.
An affine scene projecting to’* exists if and only if there i§,, such that2,x* > 0.

This is an interesting result saying that fleént camera is directionalits image plane
being the plane at infinit§2,,.

6 Conclusion

Well-known matching constraints for points and lines are ardgessargonditions for

the existence of any real geometry projecting to the given image points or lines. Besides
singularities, the reason is that they are projective rather than affine, even if the under-
lying geometry is indeed affine. Based on oriented projective geometry represented by
Grassman tensors and the ch(e)irality theory, we have modified the old constraints and
presented some entirely new constraints. The modified constraints are stronger than the
original ones. Some are evaacessary and sufficiefdr the existence of a real scene and
cameras.

Of course, there is a general way how to test any set of corresponding image points
for the existence of an underlying real geometry: compute a projective reconstruction and
solve ch(e)iral inequalities [3, 2] by e.g. linear programming. However, our task was to
obtain these constraints in termsiolage entitieslike image points, image lines, epipoles
and multiview tensors. This has allowed achieving mmemetrical insightén multiple
view geometry. Moreover, some constraints are entirely new.

To be able to achieve results for matching constraints, we formulated the ch(e)irality
theory [3, 2] in oriented projective geometry, generalized it for panoramic cameras and
flats of arbitrary rank, and represented in Grassmann tensor algebra. We believe that this
synthesis is a step towards a rigorous theory of oriented multiple view geometry. Such
theory will become more necessary when panoramic cameras are used frequently [1],
since some concepts and problems that are trivial for conventional cameras need formal-
ization for more general cameras. Moreover, the theory applies quite straightforwardly
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for different dimensions of the scene and image spaces, e.g. for cameras represented by
2 x 4 projection matrix, which have a line as its 'projection center’ and another line as a
‘retina’, and, in fact, for an arbitrary dimensions of scene and image spaces.

Using this new framework, we have not only derived new results (Theorems 3, 4, 5,
6, and 9) but also simplified and/or generalized some existing results (Definition 1 and
Theorems 1, 7 and 8 from [3, 9], and Theorem 2 from [8, 9]).

The paper is not easy to read. Besides the fact that the topic itself is difficult, the
reason is that the limited space of this paper allowed only for very compact text. To
explain the topic in a more reader-friendly way would require much longer paper with
many figures. We refer to [6] instead. However, the definitions and theorems should be
independent on the (possibly too brief and unclear) rest of the text, as long as the reader
is familiar with the notation from [8].

There is a number of open questions. Polynomial algorithm and minimal counter-
example for lines in two images with unknown epipoles. Perhaps, Theorem 3 is a tau-
tology: using a Monte Carlo search, we did not succeed in finding any configuration of
image lines violating Theorem 3. Constraints on points and lines in more images can
be combined. Is there a closed form of matching constraints involving panoramic cam-
eras with scene affinity and camera handedness imposed? Even if the paper is meant
as theoretical, quantifying the usefulness of the constraints for practical tasks would be
interesting. Among these tasks are constraining search space in matching, discarding so-
lutions for multiview tensors not corresponding to any real geometry (e.g., in estimating
F or Tﬁ;f‘2 from minimal number of correspondences), restricting the set of solutions
for structure and cameras, and oriented flat transfer.
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