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Abstract

In this paper an information theoretic approach is provided for resolving
border ambiguity under partial occlusion. The proposed framework allows
structural interpretation of images prior to the application of domain specific
knowledge. The central idea behind MDL based figure-ground grouping is
merging those place-token candidates whose composed description length
(whole) is better than sum of their individual description lengths (parts). The
computational theory is illustrated by application to blocks-world images.

1 Introduction

The human visual system is able to attach depth perception to objects even in the absence
of stereo data, making good decisions to distinguish foreground (figure) from background
(ground). In addition particular shape completions can be predicted for occluded con-
tours. However the majority of computer vision systems today lack this level of generality.
Traditionally such systems have relied on use of domain specific knowledge and models in
order to derive structural interpretation of images. In contrast, human visual perception is
able to infer structure from the image without prior knowledge of the scene [20] [18] [23].

Figure 1: Simple line Drawing illustrating perception of relative depth under partial oc-
clusion

Figure 1 shows an example of a simple 2D line drawing which a typical observer
would interpret as ’a rectangle partially occluded by another rectangle’ despite the fact
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that other consistent figure-ground interpretations are possible in principle. Three of
these are shown in figure 2(a),(b) and (c). All interpretations postulate two objects but
with different assumptions about which is figure and which is ground. The human ob-
server prefers interpretation (a) with a rectangular hidden contour rather than (b) or (c).
This accords with Gestalt principles [13] and the tendency to avoid accidental configura-
tions [18]. In the absence of such principles the scene in figure 1 is subject to unresolvable
figure-ground ambiguity.

foreground

interpretation (c)

background

interpretation (a) interpretation (b)

foreground

background
foreground

foreground

Figure 2: A few possible interpretations of figure 1

Figure 3 illustrates additional problems that arise in image data using an example
from the blocks world. Once straight line edges have been segmented out from the image
there exists difficulty in identifying which lines should be grouped to form major figural
areas of the image. Furthermore, in the absence of domain knowledge, partitioning the
figural set into groups to identify a specific foreground structure from its background is a
challenging task because occlusion, illumination conditions, reflections, shadows etc., can
cause image contours to get fragmented and displaced. In figure 3 it can be observed that
the partitioning is ambiguous at the occlusion boundary between the blocks. Traditional
cues like T-junctions cannot be used straight away to identify the foreground until gaps are
perceptually closed. Recent figure-ground discrimination systems like [2] [19] perform
well in terms of removing texture edgels and preserving edgels corresponding to smooth
boundaries of large groups but the grouping is often imperfect at the point of occlusion.
This example is analysed in section 4.

Figure 3: Image contours fragmented by partial occlusion resulting in border ambiguity

Often the figure-ground problem can be formulated as a ’border ownership’ prob-
lem [21] (as in the Rubin’s vase example, figure 4) and is inter-related with determination
of salient regions. In general figure/ground segregation involves two aspects:
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Figure 4: Rubin’s vase: figure ground ambiguity

1. deciding to which region a boundary curve belongs (border ownership ambiguity),

2. deciding how the ground continues behind the figure (amodal completion).

It is the purpose of this paper to present a computational framework to resolve border
ownership ambiguity based on the Minimum Description Length (MDL) principle.

2 Related past work

Although the initial contribution for perceptual analysis of figure/ground organization
came from psychology [13] [12] [5], defining a computational basis for visual perception
has become a computer vision research problem [20] [18] [23] [14].

Some recent 2D figure-ground analyses [8] [21] model the shape figure boundary
as a source of heat diffusing inwardly. Smoothness over a pixel neighbourhood is the
major constraint imposed to constrain the hypotheses to fit the diffusion field. Bayesian
modelling [8] and a leaking energy model coupled with Markov random walks [21] are
some strategies used to minimize an entropy criterion while fitting the diffusion field to
local hypotheses.

The detection of salient image point sets through a saliency measure is closely re-
lated to figure-ground discrimination [2] [19] [7]. Each saliency measure is a function
of a set of affinity values assigned to pairs of edges and all affinity measures incorporate
Gestalt principles of good continuation and proximity in some form or other, e.g. co-
circularity [9], closure [19]. Jacobs’ [11] measure detects salient convex groups while
Mahmud, Williams and Thornber [19] detect closed salient groups by first applying a lo-
cal affinity measure proportional to the likelihood that a smooth contour passes through
the given edges. This affinity measure is then used to compute a global saliency measure
proportional to the relative number of closed contours that join a pair of edges.

In the intermediate level of organization, hypotheses of segments, arcs and points of
interest are generated from salient chains and grouped according to parallelism, proximity,
collinearity, continuity etc., to form graphs of geometric primitives [1] [18]. Smooth con-
tinuation is an important factor that promotes figure-ground separation and optimal dis-
covery of object-like components in the scene corresponding to structurally salient parts
of the image. This factor has been interpreted in terms of minimum energy curves in the
context of surface organization [4], generic positioning or non-accidental alignment [22],
contour smoothness under occlusion of opaque surfaces [22], and low curvature between
edgels [2].

The role of convexity has been highlighted in determining border-ownership and
figure-ground organization both in psychology [12] and in computer vision [21] [11] [4].
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In real images contours are often fragmented by occlusion, shadows and low reflectance
contrast. Contour closure is a strong indicator of sets of fragments that could have possi-
bly originated from a common object [6].

Recently there has been renewed interest in discovering image structure in advance
of applying domain knowledge in order to supply better structural descriptions going into
recognition stage. Boundary based region segmentation incorporating region intensity and
geometry [10], merging of color-based segmentation with depth information [3], cluster
analysis to obtain coherent groups [7] are modern approaches in grouping / segmentation.
However the problem of figure-ground grouping to disambiguate occlusion boundaries at
intermediate level has not been directly addressed by any of the above works.

3 Simplicity and Structure

3.1 The MDL Principle

The Gestalt School [13] tried to express the intuitive notion of simplicity conveyed by Oc-
cam’s razor through the principle of Pr

�� gnanz. Since the Gestalt psychologists, a number
of researchers have attempted to define visual perception in terms of simplicity of de-
scription [5]. Leclerc emphasized the idea that simplicity of description is an important
guiding principle in vision and used minimal-length-encoding to formally express this
notion to perform image segmentation [14]. The MDL (Minimum Description Length)
principle has since been applied in computer vision research for a wide variety of prob-
lems like image partitioning [16], edge [17] and part segmentation, data clustering, object
recognition. The MDL principle [15] states that ”the best theory to explain a set of data
is the one which minimizes the sum of

� the length, in bits, of the description of the theory; and

� the length, in bits, of data when encoded with the help of the theory.”

Following Li’s notation [16] let
�

= (
���

,
���

,. . . ,
�	�

) be a parameter vector of hy-
pothesis or model

�
with 
 components. Let �
���	� ��� represent a parametrized class of

probability functions that assigns a probability to any observation � =( � � , � � ,. . . , ��� ).
Given a hypothesis space � , we want to select the hypothesis

�
such that the length of

the shortest encoding of data � together with hypothesis
�

is minimal. This leads to the
minimization of

��� ����� �	��� � ����� �	��� � � �	�����! �"$# � �
����� �	��� � � ��� (1)

where
� � �	� is a measure of the information contents in the model parameters. Any bit

saving obtained by encoding the data with the model
�

(i.e. decrease of data encoding
length due to the use of the model) is to be traded off against the additional cost

� � �	� of
encoding the model parameters (called model overhead). Errors in fitting incur a further
cost because they have to be additionally encoded. Any data outlying the model increases
the bit cost as it requires to be separately encoded. Based on the principles of algorithmic
information theory [15] the length of a compact description (MDL) of the data is taken as
a valid objective measure for simplicity.
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3.2 Computational theory

Following Marr [20], the visual perception process may be modelled as consisting of
three tasks - selection, grouping and discrimination of tokens extracted from the image.
These processes are applied at different levels of abstraction to obtain tokens of a higher
level. In order to obtain a satisfactory grouping organization, the grouping process should
progressively be able to identify the regularity relationships in the input data and ac-
cordingly package the input data so that only the package unit is subsequently visible to
the ensuing grouping processes. When repeated at several levels, the grouping process
should produce structures that increasingly correspond to object components present in
the scene that originally created the image [18]. At the highest level, interpreting im-
age structure involves joining or severing contour fragments to determine figure-ground
arrangements of structurally salient parts of the image [23]. Saund [22] conceptualizes
events as ’non-accidental’ when grouped configurations could be described with fewer
relative parameters than in the generic ungrouped case. Each new package created by the
grouping process requires fewer relative parameters for description than the original input
set.

The objective of a figure-ground segregation module is to be able to localize figural re-
gions in the image with potential object-hood. In order to produce a meaningful semantic
representation, which can be used by higher level reasoning processes, the primary task
is to form sensible interpretations that capture overall image structure. A basic premise
underlying most of past works interpreting image structure is that not only more generic
and least accidental figure-ground interpretations agree well with human visual perception
results [18] but also such interpretations are invariably ones of minimal cost [23].

Hypothesizing after Leclerc that the grouping process intends to combine place-tokens
such that progressively simpler descriptions (models) are obtained, place-tokens ( � � ,
� � ,. . . , � � ) form a valid group

�
if their unified description length is less than the ag-

gregate sum of their individual description lengths.

� � � � � � ��� � ��� � � ��� �
� � ��� � � ��� �������	� � � ��� � � �	� � (2)

The above inequality expresses the idea that the group as a whole is a better explanation of
the given data than ungrouped individual place-tokens by providing a simpler description.
Thus we consider figure-ground grouping as a bottom-up process that combines image
place-tokens to achieve the simplest description. The Gestalt concepts of proximity and
continuity play a key role in restoring configurational wholes from parts. The comparison
of the minimum description lengths of spatial models to establish that the information
content of ’whole’ is more compact than that of aggregation of ’parts’ puts this intuitive
notion on a firm quantitative footing.

Therefore the central idea behind grouping based on MDL is merging those place-
token candidates whose composed description length is smaller than sum of their indi-
vidual description lengths. A similar view on grouping has been taken by [17] and [7]
but not applied towards resolving border ambiguity. Applying MDL to figure-ground
grouping makes explicit the tradeoff between how structured the image is to how com-
plex (succinct) its description. In general, figure-ground organization schemes construct
and regularize an objective function by penalizing any deviation from desired smoothness
or genericity based on local evidence subject to constraints identified at the required level
of abstraction [2] [8] [19] [22]. MDL is a better regularization metric than choices of ad
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hoc cost functions and more suitable to figure-ground problem because the trade off helps
identify high-level structures in the image with simpler descriptions.

4 MDL based Structural Interpretation model

We now describe our approach to this problem and the results obtained from our imple-
mentation.

Our model consists of 4 stages. In the first stage boundary contour segments are
recovered from proximal points based on Li’s MDL based line/ curve fitting [16]. The
basic MDL computation is performed as in equation (4) [given in Appendix] for each
line in the structural hypothesis fitting a number of data points to the line. In the second
stage collinear lines are grouped. The composed MDL is computed for collinear and
non-collinear cases. Depending on the minimum composed MDL a collinear or non-
collinear model is selected [17]. The third stage consists of initialising closed groups,
which compete for figural status. The first step in this stage is checking for closure. For
a given set of proximal segments with gaps, the closure property is validated using the
measure of closure formulated by Elder and Zucker [6]. The next step is to close the gaps.
As suggested by [1] elementary junctions could be detected from straight-line segments
by finding ’actual’ and ’virtual’ intersections. To allow merging of fragmented edges,
small gaps are filled in if a composed model gives a lower MDL as recommended in [17].
The final stage consists of evaluating the MDL of figure-ground hypotheses supported by
local structural combinations put in mutual competition at the ambiguous border. A lower
MDL value (measured in bits) indicates a preferred interpretation. Results for simple
line drawings and image data are shown for � = 1.0,

�
= 0.0001. Figures 5 to 8 show the

line drawings, images used in experiments and their structural interpretations subjected to
MDL selection. Since offset points and outliers are an integral part of the MDL framework
stable fitting is observed even without perfect line data. Although results have been shown
for straight line segments the method is readily extendible to curvilinear segments. The
description lengths computed for various interpretations for each figure are listed in Table
1. It can be observed that in each case the interpretation chosen as the winner by the MDL
selection module is perceptually plausible. Apart from resolving border ambiguity (fig 5
and 8) the method also helps evaluate structural interpretations for choosing better groups
and figural completions (fig 6 and 7).

A

B

(a) (b) (c)

Figure 5: Structural interpretations for figure 1

For the line drawing example in figure 5 the ambiguous border may belong to either
region A or region B. Which region is the foreground and which one the background
depends on the ownership of the ambiguous border. Three structural interpretations figure
5(a), 5(b) and (c) are shown. In 5(a) region A owns the ambiguous border and is the
foreground. In 5(b) region B owns the ambiguous border and is the foreground. In 5(c)
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both A and B are placed coplanar and both of them are in the foreground. The MDL
bit-value computed for these 3 interpretations are shown in Table 1. It can be observed
that the MDL value for interpretation 5(a) is the least. This shows that our method picks
out an interpretation that coincides with a perceptually plausible choice.

In the example shown in figure 6 it is illustrated how our MDL selection method
can also successfully choose between ambiguous structural groups. A situation is shown
where segments A and B compete with segments E and F to be grouped with segments C
and D. The groups ABCD and EFCD are shown in figure 6(a) and 6(b) respectively. The
MDL values computed for each of these grouping interpretations are given in Table 1. It
can be seen that EFCD is the winner because it has a lower description length.

(a) (b)

Figure 6: Ambiguity in forming structural groups

In figure 7 structural interpretations are superimposed on a portion of an image to
illustrate how our method can decide the suitability of figural completions. Figure 7(a)
shows the outlines of the bigger and smaller blocks with figural completion for the bigger
block undecided. In figure 7(b) the missing part of the background is completed and so
the bigger block has a complete outline. The two structural interpretations are evaluated
using MDL with the results being shown in Table 1. It can be seen that the interpretation
7(b) has a much lower description length compared to 7(a) and hence the winner. Here a
natural choice of figural completion has been used. The true advantage of the method is
that a selection can be made when a number of figural completion curves are postulated.

(a) (b)

Figure 7: Structural interpretations superimposed on cropped portion of grayscale image
(copyright of image: INRIA-Syntim image database)

In figure 8 two different interpretations of the image example given in figure 4 are
shown. In interpretation 8(a) the lower block is the background while upper block is the
foreground. The ambiguous border belongs to the upper block in this interpretation. In
interpretation 8(b) the lower block is the foreground occluding the upper block. The am-
biguous border belongs to the lower block in this interpretation. The description lengths
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figure MDL in bits MDL in bits MDL in bits winning
number Interpretation (a) Interpretation (b) Interpretation (c) interpretation

5 340.0 425.3 449.6 (a)
6 206.6 152.8 (b)
7 915.4 564.7 (b)
8 684.2 285.4 (b)

Table 1: MDL results and choice of winning interpretation

of these two interpretations have been shown in Table 1. It can be seen that interpretation
8(b) has a lower MDL compared to interpretation 8(a). Interpretation 8(b), the winner by
our selection procedure, coincides with the perceptually reasonable choice.

(a) (b)

Figure 8: Interpretations superimposed on blocks image of figure 3

5 Conclusion

An approach towards resolving border ambiguity in images has been proposed through
novel application of the MDL principle. The approach processes geometric information
in advance of applying domain-specific knowledge. It also helps compare and select
grouping configurations.

Inferring the structure of the physical domain and reconstruction of a larger fraction
of the environment from image data is a crucial step for any bottom-up vision model
attempting to carry out complex tasks such as learning and recognition, especially with the
availability of very limited domain knowledge. The model proposed here is a step in this
direction. However, as Marr [20] recognized, the intricacy of figure-ground segmentation
arises from several subproblems and may not be derivable from a single underlying theory.
Minimizing descriptional complexity may only be a single aspect of this multi-faceted
problem, which still remains a challenge for the computer vision research community to
explore further.

6 Appendix

This section gives details of Li’s MDL based 2D shape description [16] [17] which is
employed as the descriptive language by the structural interpretation model described in
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this paper. Equations and notations have been reproduced as in [16] [17]. Li’s 2D shape
description uses two-part MDL coding consisting of the fitting model part and the outlier
part, i.e.,

� ��� ��� ��� ��� ��� �	� � � ��
 where
���

is the model (line or ellipse) to be fitted to
� data points,

���
is the outlier part and � is the number of outliers. Assuming that a point

is randomly located in the given range ��
 x ��� , for a coordinate � or � having a uniform
distribution in its range the description length of the variable is

 �� ����
 � �
�

or
 �� ����� � �

�
.

The description coding length of a point for � x � image is

����� ����� �
��� � � �"!  "$# � �
�

(3)

The total description length of data � using line segment model
�$#&%

is

� � ����� � #&% ��� � �(' �*)�+ � � % � � # + �-, �*.0/1. � , � , / % � � � )32 , # �*)�+ � � % � � )�45� # + , / % � ����� � #6% � (4)

in which � # + �7, �*.0/8. � , � , / % ���
� �	���:9�!  �"$# � �
�

(5)

for describing the two end points of a straight line segment,

� � )32 , # �;)3+ � � % ���
� �	��� ��< � � � � )8=>= % , � �	? �3@ � (6)

with � )3=>= % , � �	? �8@ ���
 �"$# ��A
� � ?

�
@
� �  "$# � @

�

�  "$# � � �CB��� (7)

where
� )3=>= % , � ��? ��D �3@ � specifies that the coding length of the offset error of a data point

with respect to the line is approximated with Gaussian distribution. This coding length
is approximated by the expected coding length of the outcome of a centered Gaussian
distribution ?�E < ��D � F �8@

� �
quantized with resolution � and

� )�45� # + , / % � � �  �"$# � �
�

(8)

where the � points classified as outliers are modeled as random points having uniform
distribution in the image domain.
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