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Abstract

New Zernike velocity moments have been developed to describe an object,
not only by its shape, but also by its motion throughout an image sequence.
These are an extended form of the orthogona Zernike moment set and in-
clude velocity information introduced via centralised moments. Initial anal-
ysis shows that they perform well when applied to analysing gait sequences
resulting in a good recognition rate and a compact description. They have
exhibited promising attributes when applied to occluded data, which is re-
flected in the method of describing a complete temporal sequence and not
single images. Further, they appear to provide measures intimately related
to the moving and/or morphing shape within the sequence. Their invariance
properties suggest that they will be useful in real situations where poor qual-
ity or camerazoom problems are apparent.

1 Introduction

The application of classical moments to two dimensional images was first shown in the
early sixties by Hu [4]. Hu tested their validity using a simple experiment to recognise
written characters. Hu was only concerned with images without noise, but further work
[2], showed that traditional moment performance degrades where the view is occluded or
noisy. A survey of moment based techniqueswith respect to computer vision [10] details
many of the current techniques regarding representation and recognition. However, all
of these are only interested in processing single images. Little [6] used moment based
features to characterise optical flow for automatic gait recognition, thus linking adjacent
images but not the complete sequence. Further work analysed the compl ete sequence by
extending the centralised moments to include velocity, [5]. However, the features pro-
duced were highly correlated, due to the non-orthogonality of the original Cartesian mo-
ments on which the description is based. These moments were invariant to scale changes
between sequences, but not to changes within each sequence.

Here, a new method is proposed which aims to describe motion, through atime vary-
ing sequence, producing less correlated and more compact descriptions. This new tech-
nigque includes the advantages of invariance to both trandation and scale (both between
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and within sequences), making it applicableto area situation where camerazoom is ap-
parent. The method studied is an extended form of the established Zernike moment set
which iswell proven in both pattern recognition and in the presence of image noise, [10].
This new approach has its basis in a standard technique for region description, enabling
its use as ageneral method for describing moving objects by holistic measures.

1.1 Non-orthogonal Cartesian Moments

Moments, when applied to images, describe the image content with respect to its axes.
They are designed to capture global information about the image. Here we are using
them to characterise a grey level image so as to extract properties which have analogies
in statistics or mechanics. The moment expressions use basis functions which have a
range of useful properties that are passed onto the moments. This produces descriptions
that have rotation, scale, translation and orientation invariance properties. Early work
[4] applied statistical moments to image analysis using the Cartesian moments, which in
discrete form are:

M N
Mypq = Z Z aPy? Py @

z=1y=1

Extending them to include tranglation invariance produces the Centralised moments:

M N
Hpq = ZZ(x—f)p(y—y)quy 2
z=1y=1
Where M and N aretheimagedimensions, while (z —z)?(y —y)? and zPy? arethebasis
functions. P,, isthe pixel value at position (z,y), while T and § are the z and y centres
of mass (COMs) respectively.

1.2 Orthogonal Complex Zernike Moments

Complex Zernike moments [12] are constructed using a set of complex polynomials
which form a complete orthogonal basis set defined on the unit disc 22 + y? < 1. They
are expressed as:

m

_m+1 )

™

wherem = 0,1,2...00, f(z,y) isthe function being described, * denotes the complex
conjugate and n is an integer, subject to the conditions:

m—|n| =even, |n| <m 4
The Zernike polynomials[3] V.. (z,y), expressed in polar coordinates are:
Vinn(r,0) = Ry (r) exp(jnd) )

where (r, §) aredefined over theunit discand R ,,,,, () isthe orthogonal radial polynomial,
defined as:

m—| n |
2

Ryn(r) = (—=1)° F(m,n,s,r) (6)
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where:

(m — s)! -2
F(m,n,s,r) = rmTee
( ) Sg(m —s)! (w —s)! 7
Thefirst six orthogonal radial polynomialsare:
R()()(T) = 1 Rn(?“) (8)

=r
RQO(T) = 2’/’2 -1 R22 (7“) = 7’2
R3i(r) = 3r3 —2r Rs3(r) =r?

Figure 1 shows eight such radial responses, where it can been seen that the polynomials
become more grouped, as they approach the edge of the unit disc. So for a discreteimage,
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Figure 1: Eight orthogonal radial polynomial plots.

if P(z,y) isthe current pixel then Equation 3 becomes :

m
Amn =

LSS Pl ) Vi, p)] Wherez? +47 <1 (9)
z oy

™

To calculate the Zernike moments of an image f(x,y), the image (or region of interest)
is first mapped to the unit disc using polar coordinates, where the centre of the image is
the origin of the unit disc. Those pixels falling outside the unit disc are not used in the
calculation. The coordinatesare then described by » which isthe length of the vector from
the origin to the coordinate point and # which is the angle from the = axis to the vector
r, by convention measured from the positive z axisin a counter clockwise direction. The
mapping from Cartesian to polar coordinatesis:

x =71 cosf y =1 sinf (20

where
r=Vaty  o=tan (%) (1)

However, tan—! A in practice is often defined over the interval — 7 <
must be taken as to which quadrant the Cartesian coordinates appear in.

# < 3, socare
Translation and
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scale invariance can be achieved by normalising the image using the Cartesian moments
prior to calculation of the Zernike moments [1]. Tranglation invariance is achieved by
moving the origin to the centre of the image by using the centralised moments, causing
mo1 = myo = 0. Following this, scale invariance is produced by altering each object so
that its area (or pixel count for abinary image) ism oy = 3, where g is a predetermined
value. Both invariance properties can be achieved using :

g(z,y) :f(E +f,g +y) wherea = mio (12
a a

and g(x,y) is the new translated and scaled function. The error involved in the discrete
implementation can be reduced by interpolation. If the coordinate calculated by Equation
12 does not coincide with an actual grid location, the pixel value associated with it is
interpolated from the four surrounding pixels. Asaresult of thenormalisation, the Zernike
moments | Ago | and | A1 | are set to known values. | A1 | is set to zero, due to the
tranglation of the shape to the centre of the coordinate system. This however will be
affected by a discrete implementation where the error will decrease as the image size
increases. | Ao | isdependent on m o, and thuson j:

4o | =2 (13)

Further, the absolute value of a Zernike moment is rotation invariant as reflected in the
mapping of the image to the unit disc. The rotation of the shape around the unit disc is
expressed as a phase change, if ¢ isthe angle of rotation, A% isthe Zernike moment of
the rotated image and A ,,,,, is the Zernike moment of the original image then:

Aﬁn = Apn exp(—jno) (14)

1.3 Cartesian Velocity Moments

The Cartesian velocity moments [5] are computed from a sequence of images as:

Images M N

UMpguy = >N UG, u,7) Cli,p,q) P, (15)

=2 z=1ly=1

C(i,p, q) arises from the centralised moments:

C,p,q) = (x —T9)"(y — ¥3)* (16)
U (i, u, y) introduces velocity as:

T; is the current COM in the x direction, while z; 7 is the previous COM in the z di-
rection, 7; and 7; 1 are the equivalent values for the y direction. It can be seen that the
equation can easily be decomposed into averaged centralised moments (vm 1109), and then
further into an averaged Cartesian moment (v 1109 With T; = 7; = 0). The zero order
velocity moments for which u = 0 and v = 0 are then:

Images M N

vMpgo = Y DY (x—F)(y —T70)"Pi,, (18)

i=2 z=1y=1
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which are the averaged centralised moments. The zero order componentsfor whichp = 0
andqg =0 are:

Images M N

vmoouy = Y, Y (T — T (@ — i) P, (19)

i=2 o=1y=1

which is a summation of the difference between COMs of successive images (ie the ve-
locity). The structure of Equation 15 allows the image structure to be described together
with velocity information from both the zz and y directions. These results are averaged by
normalising with respect to the number of images and the average area of the object. This
resultsin pixel values for the velocity terms, where the velocity is measured in pixels per
image. The normalisation is expressed as:

vm
UMpquy = Atjq;[w (20)

where A is the average area (in numbers of pixels) of the moving object, I is the number
of images and v1m 4,5 is the normalised Cartesian velocity moment.

2 Zernike Velocity Moments

The new Zernike velocity moments are expressed as.

I'mages

Ay = 523 SN UG ) S(omm) P, @
=2 T Yy

They are bounded by z2 + y2 < 1, while the shape's structure contributes through the
orthogonal polynomials:

S(m,n) = [Vin(r,0)]" (22)
Velocity is introduced as before (Equation 17), while normalisation is produced by:
Amn
Amnie = =0T @3

The coordinate values for U (i, u, ) are calculated using the Cartesian moments and then
trandated to polar coordinates. If we consider first the x direction case only, from Equa-
tion 10 the angle 6 for a differencein z position is either 0 or 7 radians. The value used
is dependent on the direction of movement. If the movement isleft to right then:

x=r cosf =r cos(0) =r (24)

where r is the length of the vector from the previous COM to the current COM, ie the
velocity in pixels/image. Alternatively, if the movement is right to left then:

x =1 cost =r cos(w) = —r (25)

The mapping to polar coordinates results in a sign change which could be used to detect
the direction of motion. Similarly for they direction velocity, the values of 6 are either 7
or 37“ radians, and using Equation 10 produces:
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y =r sinf =r sin (g) =r (26)

3

y=r sinf =r sin <7> =—r (27)

3 Application to Gait Recognition
31 Gait

Gait is the manner by which we walk and is primarily determined by our musculature
and joint structure. There are two main computer vision approaches to gait recognition
[8]: either model-based, or statistical holistic descriptions. The latter has been used by
Huang [9] wheretemporal changesin gait are detected using optical flow techniques. This
method produces 100% recognition on a small database, it shows that statistical methods
indeed look promising, however this approach lacks the intimacy of gait as none of the
measures are specifically linked to gait itself. Another statistical approach [6] has taken
moments of optical flow, again producing encouraging results. A set of features, derived
from moments are used to produce a model free description for recognition. The method
exploits the periodic variations in a person’s motion, achieving recognition rates of over
90% for five features. Here we apply the Zernike vel ocity momentsto the problem of gait
recognition, to produce a compact invariant description of both shape and motion.

3.2 Database Characteristics

The subject database used hereis identical to that used by Little [6] and Huang [9], con-
sisting of six subjects, with seven sequences per subject. In each sequence the subjects
arewalking from right to left, along aslight inclinein front of a static background, an ex-
ample of which can be seen in Figure 2a. The subjects are all walking at similar speeds,
however variations in speed exist both within a sequence and between sequences. The
distance between the camera and the subject varies between some sequences thus the
need for scale invariance within the feature description. The variation in distance leadsto
interaction between both the ground and the background causing shadowsto appear. This
isin addition to the shadows appearing (on most sequences) from reflections on the floor,
Figure 2b. Thereis also evidence of interaction between some subjects’ clothes and the
background affecting the feature (subject) extraction.

3.3 Feature Extraction

A statistical based subject-extraction method [11] was used to produce a small database
of silhouettes. (However, aternative model-based extraction techniques exist, [7]). The
extraction method analyses the statistics of the sequence, and uses both luminance values
and edgesto determine the background and foreground information. Silhouette extraction
is based on scene variance and standard deviation. The silhouette is then windowed using
the average velocity to produce the final spatial templates (128x 160 pixels), Figure 2b.
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Figure 2: Example image from the subject database and windowed spatial templates.

3.4 Subject Mapping

Prior to the tranglation and scal e invariance mapping detailed in Section 1.2, the COMsare
calculated to adjust the velocity calculations for differences between the average vel ocity
and the actual velocity between successive images. This difference is then added to (or
removed from) the extracted average velocity during the velocity moment calculation.
The subject is then mapped onto the unit disc. The value of 3 for Equation 12 is set, so
that the mapped pixels coordinates are within 90% of the unit disc’s radius. Thisis done
to reduce the effect of the converging polynomials as r approaches unity, Figure 1.

3.5 Gait Recognition

Zernike velocity moments up to order m,n = 12, u = 4,y = 0 were calculated for al
the sequences of spatia templatesin the database. The new moments were calculated for
one complete gait cycle, from hedl strike to heel strike (or two steps). To further reduce
the size of the selection problem only the magnitudes of the velocity moments were stud-
ied. Suitable moments for classification were then selected using the one-way ANOVA
technique, where ANOVA is a general method for studying linear models. The purpose
is to test for differences in class means, where here a class is a specific human subject.
Using this technique, features which produce discriminatory capabilities can be selected.
Classification (or recognition) was then achieved with a £-NN approach with £ = 1 and
3, using the leave one out rule with cross validation. Prior to classification the vel ocity
moments were normalised by their maximum values, to ensure that moments with larger
average values did not bias the results. Figure 3 details the recognition results. It can be
seen that a recognition rate of over 80% with & = 1 is achieved using only two features.
100% recognition is achieved using just five features, for both £ = 1 and 3. Figure 4a

Zernike Velocity Moments Recognition Rate

order - mnuy k=11 k=3

8210 61.90% | 52.38%
8210,12220 80.95% | 76.19%
8210,12220,12420 85.71% | 88.10%
8210,12220,12420,5100 97.62% | 97.62%
8210,12220,12420,5100,9900 (| 100.00% | 100.00 %

Figure 3: Gait recognition rates.

shows a scatter plot of the first two Zernike velocity moments listed in Figure 3, while
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Figure 4. Scatter plots of selected moments used for recognition.

Figure 4b shows a scatter plot of the first three moments illustrating both clustering and
cluster separation. Naturally, alarger database would doubtless require more moments to
separate subjects, but it is perhaps worth noting that only a basic classifier has been used.

3.6 Occlusion

The Zernike velocity moments were then re-run with increasing amounts of occlusion
applied to one of the subjects. This analysis aimed to simulate to some extent the effects
of a subject walking behind alamp post or another such object. Figure 5 shows example
images of the subject at different stages of occlusion. The effects of the occlusion were
studied for a single subject picked at random. With the five velocity moments used for
recognition (Figure 3), the normalised mean squared error (NM SE) between the original
un-occluded and the occluded moments was cal culated, as the occlusion increased. This

AL L LR

Figure 5: Images showing the 5% occluding strip (subject is walking right to left).

S

Figure 6: Increasing occlusion, 0%, 11%, 18%, 25% and 31%.

712



T T
Sequence 1
Sequence 2 i-----:- 7
Sequence 3/------i- 4
Sequence 4i

Sequence 5/ -~~~

NMSE
IS}
@
T T T T T T T T T T T T T T T T T T

s . . . L . . | . . .
0 5 8 11 15 18 21 25 28 31 34 38 41 44 48
%age Occlusion

Figure 7: Normalised mean squared error with increasing occlusion

was repeated for five sequences of the same subject, Figure 7. The size of the occluding
strip is expressed as a proportion of the distance over which the subject walks. The NMSE
isbelow 0.05 with 15% occlusion applied. The descriptions can be seen to become noisy
as the occlusion increases past 18%, which Figure 6 shows to occlude a large proportion
of the spatial template. It must be noted that only one gait cycle has been used for the
calculation, if however more than one gait cycle is analysed then the effects of the occlu-
sion will essentially be further diluted, due to an increase in the spatial resolution. This
would in turnincrease the amount of occlusion that can be handled before the descriptions
become noisy. This analysis was not compared with the recognition rate, as the results
would be dependent on the database characteristics, (ie subject cluster compactness and
Separation).

4 Conclusions

A new description aimed at capturing both structural and temporal information of atime
varying sequence has been proposed. It contains both scale and tranglation invariance. A
recognition rate of 100% has been achieved on a gait database of 42 sequences. The tech-
nique has been shown to handle simple occlusion, the performance of which is partly due
to the integration of complete sequences, rather than describing each image separately.
The orthogonality property of the original Zernike moments means that the features pro-
duced are both smaller in magnitude than a Cartesian implementation and less correl ated.
They are however correlated in the sense that the images being described constitute a cor-
related sequence. Invariance to changesin scale within a sequence, is directly applicable
to the problem of camera zoom on a piece of imagery, which is an area of future inves-
tigation. Further to this, we intend to investigate how this new technique performs on a
larger and more varied database, including studying the effects of people’s clothes and
items that they might be carrying. We also aim to investigate how its generic capability
trangates to the analysis of arbitrary moving objects.
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