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Abstract

In this paper we present a system that combines the benefits of 3D de-
formable models and level set methods for medical volume segmentation.
Our 3D deformable model is a very computationally efficient method for
segmenting medical volumes, however it is not currently able to segmen-
t features, such as renal arteries, that are small relative to the imaging slice
thickness used. Level Set methods are an alternative approach to deformable
models that re-pose the volume segmentation problem as the calculation of
the steady state of an initial value Partial Differential Equation (PDE) system
on a regular rectilinear or cubic mesh. The segmentation obtained is parame-
terised by the zero value level set of this mesh (analogous to an iso-surface).
These methods are very computationally expensive, but have the advantage
of being able to segment relatively small features such as renal arteries. The
problem domain explored in this paper is the segmentation of arterial struc-
tures. The results of these segmentations are to be used in the assessment
of patient suitability for minimally invasive (keyhole) surgical procedures in
patients with abnormal aortic aneurysms.

1 Introduction

An abdominal aortic aneurysm (AAA) is a dilation of the abdominal aorta. AAAs usually
increase in size with time, and if left untreated eventually rupture causing catastrophic
haemorrhage. An AAA may be treated by conventional surgical methods, but increasingly
minimally invasive techniques, where a stent graft is placed in the lumen, are being used.
Patient suitability is assessed using CT data and a calibrated projection angiogram - only
about 10% of patients are suitable for the keyhole repair. Once a candidate has been
assessed as suitable, measurements are made from the same images to determine the key
dimensions of the required stent. Our overall aim is to automate both of these stages
of image analysis, ensuring that the full 3D nature of the CT is used. In this paper we
describe a segmentation aproach that combines the benefits of a 3D deformable model
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[2] (computational efficiency) with the ability of the level sets based approach [11] to
segment features that are of the order of a single slice thickness in diameter.

2 Background
2.1 A 3D Deformable Model Based on Triangulated Mesh

Our 3D deformable model has been presented previously [2], however a brief description
is presented here. The model is based on a triangulated mesh, the structure of which is
continuously refined as the model *‘grows’ to maintain the resolution required to accurate-
ly represent the image data.

The deformation of the model is controlled by a strategy similar to that of the level
set approch Malladi et al [10] or Caselles et al [4] based on the curvature of the model
surface. At each iteration, a model node : is propagated in its normal direction with speed
F', controlled by the model’s curvature K; and the image gradient at the node’s current
location.

where £; is the image-based speed term defined as
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The expression VG, * f denotes the image f convolved with a Gaussian smoothing
filter. The speed term & acts as a stopping function that has values closer to zero in re-
gions of high gradient and values closer to unity in regions of relatively constant intensity.
This approach allows the model to be initialised within the object of interest without the
requirement for the model to be close to the desired solution, which is often not practical
when segmenting complex 3D objects.

The deformable model uses refinement of the underlying mesh structure to maintain
the resolution required to accurately represent the image data during the growth of the
model as in [3, 1]. In this work, the criteria for refining the mesh structure are based the
homogeneity of the voxels across the deformable model boundary and current resolution
of the mesh at that location. Regions of the model surface where voxels normal to the
surface demonstrate good homogeneity are marked as poorly fitting, indicating the model
can deform further into these regions. The homogeneity of the voxels is defined using the
fuzzy affinity approach of Jones and Metaxas [7]. The fuzzy affinity between two voxels
c and d is defined [7] as

1 otherwise

u(c,d) = { wihi(f(c), f(d)) + wghge(f(c), f(d)) ifctd "

which is the linear combination of the fuzzy intensity /; and fuzzy gradient A, affini-
ties with weights w; and w,. f(7) is the intensity of voxel i.

T b

_L[m]z

hy(f(e), f(d)) =€ 2 °g

(4)
()

334



where m; , m, and s; , s, are the mean and standard deviations of the voxel intensities
and gradients obtained from the voxels within the surface of the deformable model.

At each stationary model node, the affinity of the voxels along a normal profile to
the mesh surface is calculated. If no discontinuity in the affinity of the voxels is found
then the model is considered to have a poor fit at this location and the node is marked as
poorly fitting. The facets of the model surface that contain the node are then earmarked
for refinement as in [3].

2.2 Expected Structure Model

Previously we have used Expected Structure Models (ESMs) [2, 9] to determine the lo-
cation of features of interest to allow the 3D deformable model to grow into these areas.
The model of expected structure is incorporated into the deformable model framework
by identifying the regions of the deformable model surface that poorly fit the image data
and matching these "hypotheses” to the structure model. The matching process identi-
fies regions that correspond to features of interest such as branching vessels rather than
regions caused by noise or adjacent structures within the image data. The information
on the expected location and direction of the feature of interest captured in the ESM for
each matched region is then used to govern the local adaptation of the deformable model’s
parameters to allow the continued deformation of the model in these matched regions.

The structure model represents the object by a probability density function (pdf) p(z)
of the model parameters. In this work, the pdf is represented by a mixture model [6]:

M
p(z) =Y p(zlj)P() (6)
7j=1
where P(j) are the mixing parameters. The component densities in this case are repre-
sented as multi-variate Gaussian distributions dependent on the means p and covariance
matrices X of the input vectors x.
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The parameters of the mixture distributions are determined using the Expectation Max-
imisation algorithm [6]. The mean and standard deviation of each measurement over the
entire training set is used to normalise the measurement values.

2.3 Level Set Methods for Image and Volume Segmentation

Level set methods [11] are a type of finite element approach used for the modelling of
evolving curves or surfaces. These methods have been widely used in the fields of fluid
mechanics and material science for some time and have recently been applied within the
field of machine vision for segmentation problems (e.g. [10]). The principal idea behind
level set methods is the definition a static, evenly spaced mesh in an image or volume
space. The values at each point on the mesh relate to the proximity of the mesh point to
an evolving curve or surface with the ‘level set of zero’ defining the location of the curve
or surface (this can be thought of as like a contour line on a map). Mesh points contained
within the evolving surface are given negative values and mesh points outside the surface
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are given positive values. A ‘speed function’ for the movement of the curve or surface
is defined and mesh values are updated (from an initial value) using a discrete time finite
element update as described in equation 8.

Vep1 + FI 7 ¢ =0 8
Where:
vy = Matrix of mesh values at time t
F' = The speed function
v = Asuitable spatial difference operator

The speed function may be made up of several terms. Typically in segmentation
applications three terms are used; a constant ‘advection’ term (analogous to the inflation
force used in some deformable models e.g. [5]), a term based on the curvature of the zero
level set and a term based on image or volume information such as edges. Curvature and
image based terms are only defined on the zero level set (i.e. on the curve or surface),
however these terms must be calculated at each mesh point for the mesh update equation
(equation 8). The solution to this is to define a ‘global extension’ to these terms where
the value at any given mesh point is defined as the value at the nearest point on the zero
level set.

Level set methods have a high computational cost as the nearest point on the zero level
set (which may have arbitrary topology) must be found for each mesh point. Narrow-band
extensions to level set methods lower the computational cost of the algorithms by only
updating the mesh in an area local to the zero level set. These methods require the mesh
to be re-initialised every few timesteps as the zero level set approaches the mesh points
that have not been updated. This re-initialisation is in itself computationally expensive,
however the overall computational cost over time may be reduced substantially using such
methods.

3 Combining 3D Deformable M odelswith L evel Set
Methods

Our system combines the 3D deformable model with an efficient level set implementation
to produce a segmentation including relatively features, such as the renal arteries, in a
realistic timescale (under 2 hours for the complete segmentation on a single entry level
P11 processor). This compares with a level set only segmentation that must run for many
hours (typically 16-32 hours).

Initial segmentation is performed using the 3D deformable model as described previ-
ously [2]. This process currently takes around 10 minutes on an entry level P11 processor.
The 3D segmentation is traced onto a set of 2D slices and a fill operation used to determine
which pixels lie inside the segmentation. These slices are then converted to a regular 3D
rectilinear mesh with points lying inside the segmentation given values of -1 and values
lying outside the segmentation given values of +1. From this points lying on the level set
may be calculated and the mesh recalculated based on distance from these points as in the
narrow band level set approach (see [11]). This process is illustrated in figure 3.1.
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Figure 3.1: An Example of Converting a Deformable Model Segmentation into a Level
Set Representation (Only a single 2D Slice is shown)
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3.1 Computationally Efficient Volume Segmentation Using Level
Set Methods

Voxels from CT data are non cubic due to the nature of the imaging process (the Z voxel
dimension is generally larger than the X and Y dimensions). Level Set methods usually
use a regular cubic mesh. Level Set methods may be performed on non-cubic rectilinear
data by either interpolation of the volume data or taking into account the non cubic nature
of the mesh in calculations of distances and derivatives within the mesh. We take the latter
approach, due to the lower computational cost involved with this approach.

Narrow band update methods (as described in section 2.3) are used in our implemen-
tation. It is useful to note that mesh values may be used to determine how close to the
level set the mesh point is and whether it is inside or outside the level set (based on the
sign).

Updating only a section of the level set (e.g. 5 slices) at a time makes the recalculation
stage of the narrow band method much more efficient. The section to be updated is moved
up or down the slices (within a band of interest) after each recalculation stage. This leads
to reasonably even ‘growth’ of the level set within the band of interest. The bands of
interest is currently selected by hand, however this process is to be automated in the near
future using the Expected Structure Model (ESM).

3.2 Formulation of a Level Set Speed Function from CT Volume
Data

The formulation of the speed function is given in equation 9.

F(z,y) = (Fo V¥ey + Fe(2',y) v ¢x’,y’)6_Fl(xl’y’) ©)
Where:
F(z,y) = Forceat mesh pointx,y
Fy = Advection force (constant)
z',y’ = Nearest point on the zero level set to x,y
F. = Curvature term (concave is +ve)
F; = Image force term, based on Gaussian derivative filters

The image force term F; is based on a 1D Gaussian derivative filter oriented in the
normal direction of the mesh at the point of interest ((z’,y’)). This filter is preferable
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to a simple edge detection such as a Sobel or Canny edge detector as its increased range
means that ‘weaker’ edges may be detected. The ‘steerable’ nature of the filter allows
calculation of edge strength in the exact direction of interest (rather than extrapolating
from x, y and z direction fixed filters). Application in 1D means the computational cost is
not high, despite the fact that processing must be performed “online’, as normals change
from one iteration to the next.

4 Reaults, Visualisation and Evaluation

Results from the combined automatic segmentation process were compared to interactive
segmentations by evaluating the minimum distance between the perimeters of objects
in the two segmentations slice by slice (mean, minimum and maximum values of these
distances are recorded). Two interactive segmentations were used for each of the four
volumes used in this evaluation. Results across the data sets were consistent and, as such,
the combined results are given in figure 1. The interactive segmentations for each data set
are also compared with each other to give an idea of the robustbustness of this reference
technique.

Comparison Mean | Min | Max
Automatic vs. Interactive | 0.57 0 1.16
Interactive vs. Interactive | 0.15 0 0.75
All values are in mm

Figure 4.1: Evaluation of Segmentation Accuracy

To put these results in to perspective the diameter of a typical (healthy) Aorta is around
15-20mm. The voxel resolution of the test data sets is between 0.5 and 0.7mm in the slice
plane. The results show the automatic segmentation is accurate to within 2 voxels (within
the slice plane) and the mean error is nearer 1 voxel.

A useful aspect of 3D segmentations (from the clinical point of view) is that they may
be visualised using computer graphics techniques to give increased spatial awareness of
the nature of the data set. Figure 2 contains screenshots of the initial and final segmenta-
tions visualised using an isosurfacing technique known as marching cubes [8].
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Initial Deformable Model Segmentation Final Level Set Segmentation

Figure 4.2: Automatic Volume Segmentations Using the Deformable Model and the Com-
bined Method

5 Discussion and Future Work

We have illustrated the various properties of our 3D deformable model (computational
efficiency and inability to segment relatively small features) and 3D Level Set Methods
(very high computational cost, ability to segment relatively small features). Combining
these methods allows segmentation of relatively small, but important, features such as the
renal and coliac arteries in a realistic timescale on modest hardware. Determining the
location of these features is important in our application as this forms an important part of
the information required in the assessment of patient suitability for the keyhole surgical
procedure.

As part of our current project we are currently planning a large scale evaluation of our
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segmentation techniques. This is required if our automatic segmentation techniques are to
replace current interactive segmentations. We have prototyped a desktop system for 2D
and 3D visualisation of segmentation results that allows measurements of blood vessel
diameters and lengths to be performed easily by surgeons without an invasive procedure
(as is currently required). This is currently being further developed in collaboration with
the surgical team at St James’ Hospital Leeds.

Currently CT volumes are used in patient suitability assessment. In the medium to
long term the surgical team wishes to transfer to using MRI as it’s imaging medium due
to health risks associated with the contrast medium in CT. This offers higher contrast at
the expense of spatial resolution. We will evaluate our segmentation techniques on this
data when it becomes available.
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