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Abstract

The use of Kernel Principal Component Analysis (KPCA) to model data dis-
tributions in high-dimensional spaces is described. Of the many potential
applications, we focus on the problem of modelling the variability in a class
of shapes. We show that a previous approach to representing non-linear shape
constraints using KPCA is not generally valid, and introduce a new ‘proxim-
ity to data’ measure that behaves correctly. This measure is applied to the
building of models of both synthetic and real shapes of nematode worms. It
is shown that using such a model to impose shape constraints during Active
Shape Model (ASM) search gives improved segmentations of worm images
than those obtained using linear shape constraints.

1 Introduction

Many computer vision problems involve modelling the distribution of data in high di-
mensional spaces. Our particular interest is in statistical shape modelling [3, 4], where
the ‘legal’ variability in a class of shapes may be learnt by modelling the distribution of
shape vectors over a training set. In many situations one can assume that the distribution
can be modelled as a multivariate Gaussian, the parameters of which are obtained using
linear principal component analysis [8]. In other cases, it is necessary to use a non-linear
model. Sozou et al, Cootes et al and Heap et al [19, 20, 5, 7] showed previously that
this is the case for some types of shape variability (e.g. large-amplitude bending), and
proposed non-linear methods of modelling shape distributions. None of these approaches
is, however, both general and robust.

Kernel principal component analysis (KPCA) [16, 17] is a technique for non-linear
feature extraction, closely related to methods applied in Support Vector Machines [13]. It
has proved useful for various applications, such as de-noising [9] and as a pre-processing
step in regression problems [12]. KPCA has also been applied, by Romdhani et. al. [11],
to the construction of non-linear statistical shape models of faces, but we will argue that
their approach to constraining shape variability is not generally valid.

We propose a new method of constructing a ‘proximity to data’ measure, based on
KPCA, and show that it does not suffer from the problems inherent in Romdhani’s ap-
proach. The method is applied to both synthetic and real shape data and is shown to
behave as predicted. The model derived from real shapes (images of nematode worms) is
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used in Active Shape Model (ASM) search [3, 4] to impose non-linear shape constraints
whilst iteratively deforming the shape template to improve the match between model and
image features. The resulting segmentations are shown to be, on average, more accurate
than those obtained when shape is constrained using a linear model. In the remainder of
this paper we give a brief explanation of KPCA with Gaussian kernel functions, a dis-
cussion of the way in which training data are distributed in KPCA space and arguments
to support our contention that the approach to modelling shape constraints proposed by
Romdhani et. al. [11] is not generally valid. We introduce a new ‘proximity to data’
measure, and present experimental results for both synthetic and real data.

2 Kernel Principal Component Analysis

Kernel principal component analysis is a method of non-linear feature extraction. The
non-linearity is introduced via a mapping of the data from the input space

�
to a feature

space � . Linear principal component analysis is then performed in the feature space; this
can be expressed solely in terms of dot products in the feature space. Hence, the non-linear
mapping need not be explicitly constructed, but can be specified by defining the form of
the dot products in terms of a Mercer Kernel function � on

�����
. We concentrate on the

case of a Gaussian kernel function.

2.1 The Basic KPCA Algorithm

Consider data points �� and �� 1 in the input space
�
	���

. The non-linear mapping�������� � is defined such that:��� ������ ��� ������ � � ��! ��"� 	�#%$"&('*),+-/.*021 � �� ) ��"� 1 0%354 ��� ��76 �  (1)

where � is the vector dot product in the infinite-dimensional feature space � , and
.

is the
width of the kernel. Note that

���8�9 � is an embedded sub-manifold of � . Properties of
this embedding [1] will become important later.

For a data set :���<; �/=�	 + to >@? , we have the corresponding set of mapped data points: � ; 	A��� ��B;C� �D=�	 + to >@? in the feature space � . Centered data points in � are defined
thus: E��� ��"�F� ��� ���� )5+> GH ;JI2K ��� �� ; � 4 ��L6 � �M (2)

Following from the definition of the dot product (1), the unnormalised and normalised
Kernel matrices over the data set are defined thus:N ;PO � ��� �� ; �2� �Q� �� O � 	�#%$"& ' )R+-D.*0 1 �� ; ) �� O 1 0 3 (3)EN ;POS� E�T� ��B;C�!� E�T� ��"OU� M (4)	 N ;VO ) +> GHW I2K N ; W ) +> GH X I2K N

X OZY +> 0 GHW\[ X I2K N W
X M

1The notation ]^ is used to denote vectors in a finite-dimensional space, whilst bold vectors (e.g. _a`b]^/c ) are
used to distinguish those in infinite-dimensional spaces.
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Linear principal component analysis is then performed by finding a set of vectors :edgf�?
in the span of : E��� ��<;h� ? which represent the principal axes of the data set, hence are the
set of extrema of the Lagrangian:i 	 +- > GH ;jI�Klk d f �

E��� ��B;C�Cm 0 )on f-qp d f � d f )@r f�s (5)

where
r f determines the normalisation of the particular vector dFf , and the Lagrange

multiplier n f�tQu . Setting the derivatives of
i

with respect to d�f to zero, and taking the
dot product with

E�Q� �� O � gives the eigenvector equation:n f d fO 	v+> H ;
EN ;VO d f; where d fw � d f � E��� �� w � M (6)

In contrast to Mika et. al. [9] and Schölkopf et. al. [17], we find it convenient to normalise
the eigenvectors with respect to the data thus:

GH ;JI2K � d f; � 0 	 + 4Qx M (7)

It follows from the definition of

EN ;PO (5) that:

GHOyI2K
EN ;VOz� u  hence GHOyI2K d fO � u 4Qx M (8)

For the corresponding vectors d�f in the feature space :

d f 	 +> n f GH ;JI2K d f;
E�T� �� ; ��� +> n f GH ;JI2K d f; �L� �� ; �{ 1 d f 1 0 	 +> n f M (9)

Hence the set of d9f thus defined form an orthogonal but not an orthonormal basis for the
space spanned by : E�Q� ��B;C� ? . Given a set of solutions :ed�f; �!=|	 + to >  x 	 + to }~? ,
ordered in terms of non-increasing eigenvalue, we define an M-dimensional KPCA space
as follows. A test point ��(6 �9 is mapped to a point �� � ���� in this space, with unnormalised
KPCA components :� f � ������ > n f d f � ��� ��*� 	 H ; d f; � � ��2 ��<;h� (10)	 H ; d f; #%$"& ' ) +-/. 0 1 � �� ) ��<;h� 1 0 3
Note that normalised components can also be defined, by substituting

E�
for

�
in the

above equation, which corresponds to a translation of the origin in KPCA space.

3 KPCA Space

KPCA space is the M-dimensional space of unnormalised non-linear components, where
equation (10) gives us the values of the components of an arbitrary point �� in the input
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space. However, it should be noted that not all points in KPCA space correspond to
points in input space. This is because, as noted previously,

�����F � forms an embedded
sub-manifold in the feature space � . This can be easily demonstrated. The form of the
mapping

�
is determined by the definition of the Kernel function � (1). From this, it

follows directly that: 1 ��� ��<� 1 0 � ��� ��*��� ��� ���� 	 + (11)

for all points �� . Hence
�����  � must lie on some embedded sub-manifold in � . However,

it should be noted that this property of constancy of the modulus will not be preserved for
points �� � ��<� when the sub-manifold is projected into KPCA space.

3.1 The Embedded Sub-manifold

Consider points in input space which are far from any data points. Directly from equation
(10), it can be seen that all the non-linear components for these points will tend to zero
as the points recede from the data. Hence, all points far from the data in input space will
map to the vicinity of the origin in KPCA space.

Now consider points which have non-zero values of the components. The importance
of the kernel width follows directly from equation (10); in the limit where

.
is infinites-

imal, the components will only be non-zero in the neighbourhood of some of the data
points (those for which the d�f; are non-zero), where the size of this neighbourhood will
be related to the kernel width. Also, the values of a component over the input space will
take both negative and positive values, since, from equation (8) at least one of the dZf; must
be of the opposite sign to the rest. These properties will persist up to some finite size of
the kernel width. Hence, if we consider any single component � f � ��*� , the extrema will
tend to lie in the neighbourhood of some of the data points, and these extreme values will
bracket the value obtained for points at infinity in input space. Since this is an ordering
property, it will be preserved if we make the transition to normalised components, since
this just corresponds to a translation of the origin. Furthermore, it follows from equations
(9) and (11) that, as noted by Schölkopf et. al. [17], the unnormalised components � f � ��<�
are bounded thus: � � f � ���� �"� > n f 1 d f 1�1 ��� ��*� 1 	A� > n f (12)

hence the embedded sub-manifold itself lies within a strictly bounded region of KPCA
space. An example illustrating these points is given in Figure 1. It shows the sub-manifold
and data points in KPCA space for a data set consisting of 100 equally spaced points on
the unit circle in

� 0
. A kernel width of 0.1 was used. Note that all the data points lie

precisely at the periphery of the sub-manifold, and that the centre of the sub-manifold,
corresponding to the origin of KPCA space, is bracketed by the data in all of the 6 dimen-
sions shown.

So, we can now see that the property which distinguishes points in the vicinity of the
data from all other points in input space, is that they lie near the periphery of the sub-
manifold. Since the sub-manifold is bounded, and since points at the periphery bracket
the origin whichever direction we consider, the distance from the origin in KPCA space
can provide us with a ‘proximity to data’ measure. Consider the function � � ���� on input
space defined thus :

� � ��<� 	��Hf I2K � f � ����\� f � ��<� 	 H; [ O [ f d f; d fO � � ��2 ��B;C� � � ��2 ���O�� (13)
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Figure 1: Plots of the embedded sub-manifold (surface) and data (filled circles) for the
example data set. Left: First 3 KPCA components, Right: The 4th to 6th components.

which represents the square of the distance from the origin in KPCA space. This is a
positive definite function, which, from equation (12), has a strict upper bound. The value
of � � ��<� will tend to zero as the point �� recedes from the data, and the local maxima of� � ���� over input space will tend to lie in the neighbourhood of the data set.

4 Constructing Non-Linear ASMs

We now consider applying our ‘proximity to data’ measure � � ��<� to training an Active
Shape Model [3, 4]. An ASM requires a statistical shape model (SSM) that captures the
allowed variability in a class of shapes. The ASM search algorithm requires that the SSM
should allow the limits of valid variation to be defined, generalising from a training set
to produce a continuous class of valid shapes, whilst excluding types of variation that are
not present in the training set. A method is also required to calculate the nearest valid
shape, given an invalid shape instance.

Each shape
=

in the training set is represented by a vector ��*; , constructed by concate-
nating the coordinates of a set of sample points around its boundary/boundaries. In the
standard approach [6], principal component analysis is used to find the parameters of a
multivariate Gaussian distribution that models the training data. Shape constraints can
be applied by placing an upper bound on the modulus of each normalised principal com-
ponent, that is, on the distance from the centre of the Gaussian (the mean shape) in the
direction of the component, normalised by the associated standard deviation. The nearest
valid instance to an input data point is constructed by finding the nearest point within the
valid region which lies in the same direction as the input point.

In their construction of a non-linear ASM using KPCA, Romdhani et. al. [11] defined
their valid shape regions by placing an upper bound on the modulus of each of the nor-
malised KPCA components. In linear PCA the values of the components are zero when
we are at the mean of the data, and the absolute values of the components increase with-
out limit as we move away from the data. However, it can clearly be seen from section
3.1 that KPCA components do not behave in this manner; zero values of all components
correspond to points far from the data, whilst the absolute values of all components are
bounded, since the embedded sub-manifold is itself bounded.

We now apply the ‘proximity to data’ measure � � ���� defined above (13). A valid data
region is defined by placing a lower bound on the allowed value of � � ��*� . The valid region
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is then the interior of the specified isosurface. Given a point outside this region, it can be
moved into the valid region by performing gradient ascent on � � ���� . (Expressions for the
derivatives of � � ��*� can be calculated from equation (13)).

5 Experiments

5.1 Artificial Statistical Shape Model

We created a synthetic class of shapes, based on the nematode worm. Each shape consists
of 16 segments (and associated landmark points), with the length and width of each worm
segment fixed. Shapes are generated by specifying the angles between the segments. An
ensemble of 200 training shapes was generated by setting the segment angles to be a linear
function of segment number, with the addition of some Gaussian noise. Examples from
the training set are shown in Figure 2. The values of the input parameters to the shape

Figure 2: Examples from the training set of
the artificial nematode SSM.
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Figure 3: Scatter plots of the first 3 linear
PCA components for the artificial nematode
SSM, in units of standard deviations.

generator were chosen so that none of the training examples contained self-intersections.
Linear PCA was then applied to the shape vectors obtained from the sets of landmark
points of the training ensemble. It was found that 6 modes were enough to account for
99% of the variance across the training set. The distribution of the first 3 linear compo-
nents is shown in Figure 3. It is clear that the distribution of the data is non-linear, and
that, for example, the mean shape (the point with zero values for all modes), itself will
not be a valid shape. Kernel PCA was then applied to the data points in the space of linear
modes, and the ‘proximity to data’ measure constructed. A valid shape region was then
defined, choosing a value of � � ��<� such that all the training data lay within the defined
isosurface. Gradient ascent to this level was then performed on a set of randomly chosen

Figure 4: Initial shapes (normal lines) and the recovered shapes (bold) for the artificial
worm SSM.
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Figure 5: Evolution from a random initial shape with self-intersections (left) to an aligned
final shape (right) during gradient ascent.

shapes. A sample of the results are shown in Figure 4, and a typical evolution during
gradient ascent in Figure 5. Note that the initial random shapes, as well as containing
self-intersections, also show considerable variations in segment width. The procedure
gives a reasonable resultant ‘nearest’ shape, smoothly removing the self-intersections and
reducing the variations in width.

5.2 Non-Linear Active Shape Model

The training set of our ASM consisted of 30 images of the nematode worm C. Elegans,
and their reflected images. Previous work on applying linear ASMs to these animals [2]
had reported problems with segmenting the full range of worm images.

Each training image was labelled by hand with a set of 43 landmark points. An ex-
ample labelled image is shown in Figure 6. A linear ASM was then built from this data.
Thirteen linear modes were found to be sufficient to account for 99% of the shape vari-
ance. The profile models at each point were modelled linearly by a multivariate Gaussian.
A non-linear ASM (but using the same linear profile models) was constructed by applying
the ‘proximity to data’ measure to the space of linear shape components. This allows a
direct comparison between linear and non-linear models to be made, since they are act-
ing on the same dimensionally-reduced data. In Figure 7, we show the distribution of

Figure 6: Close-up of a
labelled image from the
training set.

Figure 7: The nematode training set data across the
first 2 linear modes (points), plus the exactly inte-
grated ‘proximity to data’ measure (shading).
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the training set across the first 2 linear modes, and also the ‘proximity to data’ measure,
calculated with a kernel width of 0.5, exactly integrated over the remaining 11 modes.
We then compared the linear and non-linear ASMs in search mode over the training set.
Searching with an ASM is an iterative procedure. Given some configuration of the land-
marks in the image, we then search in the neighbourhood of each point for a better fit
to the profile model at that point. This set of suggested placements for the landmarks is
then fitted as closely as possible by the model, whilst constraining the shape to lie within
our valid shape region. This process is then iterated to convergence. It was found that

Figure 8: Distribution of the square root of
the mean of the square of the point-to-point
distance for linear (white bars) and non-
linear (black bars) ASM searches.

Figure 9: The cumulative frequency of the
mean of the square point-to-point distance
for linear (normal line) and non-linear (bold
line) ASM searches.

better results were achieved if the non-linear shape constraints were only applied every
few iterations, otherwise the linear constraints were applied. For each image, the starting
configuration was taken as the mean shape from the linear ASM, aligned to the image la-
bels. Once the search had converged, we then calculated the mean over the landmarks of
the square point-to-point distance between the search results and the labels (See Figures
8 and 9).

Considering Figure 8, it can be seen that the leftmost peak of the distribution, cor-
responding to successful searches, is higher for the non-linear ASM. This result is also
shown in Figure 9, where the initial portion of the cumulative frequency graph (0 to 0.6)
for the non-linear ASM lies to the left of the corresponding graph for the linear ASM,
corresponding to smaller resultant point-to-point distances. Note that the non-linear ASM
tends to diverge for some failed searches (far right of figures). Hence we can conclude
that the non-linear ASM offers an improvement in search performance over the standard
ASM.

6 Summary and Conclusions

We have discussed the nature of Gaussian kernel PCA and it’s application to non-linear
data analysis. The problems with previous approaches to applying KPCA to the task of
constructing non-linear ASMs [11] have been illustrated. We have shown how to construct
a ‘proximity to data’ function in input space using KPCA components, which then avoids
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the data reconstruction problem encountered when using KPCA components directly [9,
15]. We have demonstrated the applicability of this function using both artificial and real-
world non-linear data examples. Finally, we have demonstrated an improvement in search
performance when compared with a standard linear ASM.

What is still unresolved is how to optimise the kernel PCA parameters; the kernel
width and the number of non-linear components retained in the calculation of � � ���� . Also,
KPCA, unlike corresponding linear techniques, does not give us an explicit parameteri-
sation of the input data, and the topology of the isosurfaces of � � ��*� is not obvious. We
anticipate that the possible occurrence of disconnected regions will lead to problems with
naive ASM search algorithms. It would obviously be desirable to place the choice of iso-
surface of � � ��*� into a proper probabilistic framework. However, we anticipate this will
present difficulties, since the form of � � ��<� is not explicitly analysable. Note that whilst
we have not made any attempts to optimise the KPCA calculations above, retaining all
computationally non-zero eigenvalues, the development of algorithms to improve the per-
formance of KPCA on large data sets (e.g. >�t��/u/u�u ) has already been addressed by
several authors [10, 18], as has the question of constructing reduced-set approximations
to the exact KPCA results [14].
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