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Abstract

This paper describes an estimation and representation method for object struc-
ture in 3D image data. A windowed Fourier transform is used to estimate the
parameters of 3D local structures (lines, planes and spheres) across a number
of window sizes or scales. We present the estimation method and describe
a decision process which aims to find the simplest object description. Re-
sults of the method on test data and blood vessels from magnetic resonance
imaging are presented.

1 Introduction

The modelling and estimation of structure in 3D imagery has many important applica-
tions, such as segmentation [1, 2]. Also, a concise representation that can capture ‘suffi-
cient’ shape variation of objects within large data sets is desirable for image matching and
visualisation, where computational efficiency is important [3]. In this paper, we apply the
Multiresolution Fourier Transform (MFT) [4], extending ideas that have been success-
fully applied in 2D image analysis and motion estimation (e.g. [5]) to develop a scheme
for 3D data.

The MFT is closely related to a short-time Fourier Transform (SFT) and more akin
to an image pyramid or a Wavelet Transform (WT), employing a localised Fourier bases
at varying window sizes, than a scale-space or feature space (e.g.[6, 7]). An MFT is an
orthonormal and invertible representation but unlike a WT, its multiresolution decompo-
sition is over-complete: a complete image representation exists at any given scale. Image
feature modelling and estimation using the MFT, like the WT, have a number of advan-
tages over single resolution methods and compares favourably with spatial filtering by
a set of gradient kernels. The Fourier transform is fast to compute for any image block
and only a single forward transform is required to make all parameter estimates. A con-
tinuous estimate of feature orientation is obtained, and the goodness of fit of the feature
estimate can be checked directly by correlation. There is flexibility in feature modelling,
such as modelling regional properties like texture as well as gradient changes. Local
features are modelled at different window sizes, which reflects the nature of biological
3D imagery including medical imaging data that often exhibit self-similarity. The MFT
naturally inherits all Fourier theorems and properties, such as shift-invariance, rotational
equivariance, and invertibility, which are exploited by the parameter estimation described
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below. Perhaps the greatest benefit of using a windowed scheme like the MFT, is deci-
sion schemes that follow feature estimation and operate through scale in a coarse-to-fine
manner, which leads to simplified hypothesis testing and a recursive implementation.

2 3D Feature Estimation

The types of local structure which we wish to model are: linear structures (lines and
cylinders), planar structures and spherical or isotropic structures. Examples of these from
medical images are respectively: blood vessels and nerve fibres, bone surface and inter-
faces between tissue types. The global shape of an object, in general, cannot be modelled
by a single such primitive structure, hence the need to localise the model to a small neigh-
bourhood. In the continuous spatial domain, if a feature such as line/cylinder, plane, or
sphere is windowed by a smooth function, then it can be approximated by a 3D Gaussian:

f(~x) = (2�)�
3

2 jCj�
1

2 exp(�(~x� ~�)TC�1(~x� ~�)=2) (1)

centred on~� with C = RTC
0

R, whereC
0

is the diagonal matrix of variances representing
the extent of the function in the major axes andR is the matrix of rotation from the feature
orientation vector~� to the x-axis. For lines, the feature orientation vector is aligned along
the feature; for planes it is the normal vector to the plane. For spheres,~� has no meaning
andR can be the identity withC

0

being diagonal.
The Fourier transform of this functionf(~x) $ f̂(~u) is also a 3D Gaussian with

the spectral energy distribution dependent on the type of feature. For linear features,
the spectral distribution will lie in a plane orthogonal to~�. For planar features, it is
along the planar normal~� and for spherical features, it will be evenly distributed and the
compactness will be inversely proportional to the spatial size of the sphere.

2.1 Feature orientation estimation

Because the feature orientation lies along one of the axes of the ellipsoidal mass in the
Fourier domain, it can be estimated by finding the principal components of the moment
of inertia tensorI of the spectral energy:

I =
1

B3

X

~u

~u~uT jf̂(~u)j2 (2)

whereB is the block or window size. Performing PCA analysis on the symmetric tensor
I yields 3 eigenvalues�1 � �2 � �3 and corresponding eigenvectors~ei; 1 � i � 3.

The estimate of the local orientation of the feature,~�, will depend on how the results
of the PCA analysis are interpreted. For linear features,~� = ~e1 and for planar features,
the normal vector,~� = ~e3. For isotropic regions, all three eigenvectors can be used to
estimate the spatial extent.

2.2 Local structure classification

Measures of local linearity of co-planarity of the image block can be formed by consider-
ing ratios of the eigenvalues�i [1]:
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1. planes: If the feature is planar then�1 � �2 � �3 and the index

cp =
�1 � �2

�1
! 1 (3)

2. lines: If the feature is linear then�1 � �2 � �3 and the index

cl =
�2 � �3

�1
! 1 (4)

3. spheres: If the feature is isotropic then�1 � �2 � �3 and the index

cs =
�3
�1
! 1 (5)

Together with the average spectral energy, these indices can be used to classify a block at
any spatial size. Note thatcp + cl + cs = 1.

2.3 Feature centroid estimation

The phase spectrum,�(~u), will be related to the position or centroid~� of the spatial
function if the window function for the image block is real and even, via the Fourier shift
theorem [8]:

�(~u) = arg(f̂(~u)) = �~�:~u (6)

This expresses the linear-phase relationship between the position of the feature within the
window and the gradient of the phase across the spectrum. The feature centroid~� is then
estimated by taking average pairwise correlations between neighbouring coefficients in
each of the three axes directions,i. Sincef̂(ui � 1)f̂(ui)

� = �(ui � 1)� �(ui), then

�i =
1

2�B3

X

~u

f̂(ui � 1)f̂(ui)
� (7)

(a) (b) (c)

Figure 1: (a) Maximum intensity projection of part of a MR angiogram depicting cerebral
blood vessels. (b) and (c): linear feature estimates at window sizesB = 16; 4.
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3 Object Representation Across Scales

The goal of the feature estimation and local structure type classification is to produce a
succinct global object representation. At large window sizes, the single feature hypoth-
esis (which simplifies the estimation scheme) is generally false and multiple features of
multiple types may be present. Therefore, the data are likely to be better explained at
thenextsmaller window size. If the window sizes are chosen to decrease by a factor of
two, then there will be 8 sub-blocks (or children) of each block (or parent) forming an
oct-tree feature representation of the data. The desired compact representation will form
the leaves of a pruned sub-tree within the original feature oct-tree.

A recursive coarse-to-fine process scale selection process can be used to move from
each parent block with its children, either accepting the parent or repeating the process in
a pre-order traversal. The scale selection criteria are:

1. acceptthe feature estimate at the parent over the children by confirming that one or
more children features formall parts of the feature described in the parent window.

2. reject the feature estimate (and type classification) at the parent because the child
features disagree with the parent. This may be because of the introduction of new
features additional to that at the parent or because the feature types differ.

An example of (1) will be if a single linear feature is seen equally at both scales or within
some tolerance such as the degree of curvature or co-linearity. An example of (2) would
be if multiple, possibly separate linear features are present at the two scales. Note that in
(1), the parent is favoured for reasons of greater robustness of the estimate at the larger
(parent) window size. Also, rejecting the hypothesis in (2) will catch any degenerate cases
and allow the hypothesis to be tested at the next finer scale.

4 Experiments

Figure 1 shows estimates of linear features in part of a 3D magnetic resonance angiogram
(MRA) (size 88�58�44) at window sizesB = 16; 4 in figures (b) and (c) respectively. A
maximum intensity projection of the vessel data at the same view orientation is given in
(a). The position and orientation of larger vessels are captured in (b) but, unsurprisingly,
in some parts asinglefeature estimate is invalid. At the smaller window size, finer blood
vessels and bifurcations become apparent.

A 3D synthetic image size 64�64�64 was used to test the local feature-type dis-
crimination indicesfcp; cl; csg (figure 2(a)). The top row (2(b)-(d)) depicts the feature
estimates atB = 16; 8; 4 classified as planar patches (shown as a circle radiusB=2).
Similarly, in figures 2(e)-(g), the estimates are classified as lines and the indexcl is used
to represent the estimate magnitude. In (b), the estimates on the sphere have the highest
cp values, whereas the patches along the cylinders have a low planar index. Conversely,
in (e), the feature estimates have greater validity as lines usingcl along the linear features
in the test data (the diagonal ends of the intersecting cylinder and the vertical cylinder in
the right foreground). This pattern is partially repeated at the next window size (B = 8)
shown in (c) and (f), but the curvature of the cylinders is sufficiently low for it to be
seen locally equally well as a plane. For the same reasons, at the smallest window size
(B = 4), the planar indexcp appears to be the same across all blocks.
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(a)

(b) (e)

(c) (f)

(d) (g)

Figure 2: (a) Synthetic 3D test image containing a sphere and two cylinders with different
diameters. (b)-(d): each block interpreted as plane where intensity proportional tocp.
(e)-(g): each block interpreted as line where intensity proportional tocl.
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(a)

Scatter Plot of {c_p,c_l,c_s} B=16
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(b)

Scatter Plot of {c_p,c_l,c_s} B=8
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(e)

(c)

Scatter Plot of {c_p,c_l,c_s} B=4
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(f)

Figure 3: (a)-(c) Scatter plots of local feature-type index classification spacefcp; cl; csg
across scalesB = 16; 8; 4 for the mixed object test images (figure 2(a)). (d)-(f) Classi-
fication of blocks into linear over planar ifcl > cp with feature intensity proportional to
average spectral energy at block sizesB = 16; 8; 4 respectively.
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To visualise thefcp; cl; csg classification space across scale, we produced scatter plots
for all blocks at a given size (figures 3(a)-(c)). In (a), there are clusters aroundcp � 1
andcl � 1. In (b), a line of points begins to form across thecl = 0 plane, spreading
towardcs � 1. ForB = 4 in (c), the points begin to become evenly spread in the plane
cp + cl + cs = 1. In figure 3(d)-(f), we classified the feature estimates independently at
each window size into lines or planes by testing whethercl > cp. What is encouraging is
that at all scales the surfaces of the sphere is seen locally as a plane and is depicted as a
planar-patch, while those blocks containing parts of the cylinders are correctly classified
as being locally linear.

To test out the scale selection based on the scheme given above (section 3), we used
two MRA data sets: one containing a giant aneurysm, which is a balloon like structure
caused by the distending of an artery (figure 4(a)), and a complete MRA scan of the head-
neck arteries and veins from a normal subject (data size256�256�60) (figure 5(a)) that
has vascular structure at coarse and fine scales. In both cases because of the relatively low
SNR, it is impossible to achieve a satisfactory segmentation containing both large and fine
structures by manually setting an object/background threshold. We used a coarse-to-fine
traversal of 3 levels of an oct-tree with overlapping (by 50%) window sizesB = 32; 16; 8
to produce a combined classification and scale-selection. The selection criteria were:

1. At each scale, only consider feature blocks for which the linear/planar feature cer-
tainty was greater than a half, i.e.cl > 0:5 or cp > 0:5.

2. accepta feature estimate at a parent over a child if the feature type classification
(i.e.max(cl; cp) ) at the parent was greater thananychild.

3. reject a parent if the feature classification at any child disagrees with a parent.

Test 1 will discard most features and only consider those that look like lines or planes.
Test 2 accepts parent features if they are better fit to the data. Test 3 over rules test 2,
favouring a diversity of feature types at the next finer scale.

Figure 4(b) shows a scale-selection on the aneurysm data set with the arrow labelled 1
marking the wall of the giant aneurysm correctly represented by planar patches, whereas
the other arteries in the image are classified as lines (e.g. arrow labelled 2). The presence
of multiple estimates at some points is a result of the overlapping window structure used
in these experiments.

Results of feature estimation and scale selection for the head-neck data set are given
in figures 5(b)-(f). Figures 5(b)-(d) show a linearonly classification of blocks at three
separate scales:B = 32; 16; 8 respectively. The large vein (saggital sinus denoted by
the arrow labelled 1) is seen at all levels. The vessels which feed the head from the
neck (arrow labelled 2), are unbundled from the coarse to fine representation with most
of the finer vessels clearly indentifyable in (d). This is an example ofnewfeatures being
introduced at the next finer scale which we do not deal with explicitly in the current scale-
selection. In figure 5(e) and (f), we have used the scale-selection on the feature estimates
shown in (b)-(d), to produce a combined object representation. We have restricted the
classification to only pick and show linear features in (e), i.e. only blocks for which
cl > cp. This results is less noisy than (d) and contains 14, 123 and 1943 blocks from the
three scales respectively. In (f), we allow both lines and planes to coexist in the process
usingmax(cl; cp) to make the feature type classification at any block. As expected, most
of the image is dominated by linear features but, other than the a few planes found along
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the large vein (arrow labelled 3) in the centre of the image, what is encouraging is that
some of the artifactual fat signal from the patient’s skin surface is correctly seen as planar
patches by the tessellation (arrow labelled 4 in (f)). In this image the scale selection
picked 14, 148 and 2335 blocks across the three scales.

(a) (b)

Figure 4: (a) MIP of part of an MRA data set depicting a giant aneurysm. (b) A multi-
level object representation using 3 oct-tree scales:B = 32; 16; 8 from which 4, 34
and 1108 (overlapping) blocks of linear or planar classification have been selected us-
ing max(cl; cp) and a parent-child decision scheme (see main text). The walls of the
aneurysm are classified as planes (arrow marked 1) while the other vessels are classified
as lines (e.g. vessel at arrow marked 2).

5 Conclusions

We have described a windowed Fourier based method for describing 3D local structure
data which could be employed for feature representation in volume data, such as medical
imaging data, for a variety of applications. The Multiresolution Fourier Transform (MFT)
is used to estimate the parameters of local features classified into lines, planes or spheres.
As well as estimating the feature orientation and position, we outlined a way of classify-
ing features by considering the principal components of the second-order moment of the
energy spectrum. An important aspect of this method is that we perform the estimation
and hypothesis testing across a number of window sizes or scales, which enables the local
structure to be fixed and its extent relate to the window size.

The example results demonstrate that the simplest of classification methods can effec-
tively find a ‘descriptive’ local structure for any window size. The object representation
scheme proposed in section 3 is an extension to that used in [4] for curve extraction in 2D.
The scale selection is complicated in 3D because there are multiple feature types possible
at each block such as at vessel bifurcations in angiographic data. In such instances, a
superposition of local Gaussian features can be used to model the region with the indi-
vidual features being estimated separately using the local Fourier spectra [9]. Also, in the
presence of noise, the feature estimate is less robust and some form of local regression
can be usefully improve on the initial estimate. To achieve a segmentation it is necessary
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(a) (b)

(c) (d)

(e) (f)

Figure 5: (a) MIP of a normal MRA data set size256� 256� 60 depicting major arteries
and veins of head and neck. (b)-(d): Linear feature estimates at 3 block sizes:B =
32; 16; 8 respectively where feature intensity is proportional to estimated amplitude. Only
linear estimates for whichcl > 0:5 are shown. Large structures such as the vein (saggital
sinus) marked by arrow labelled 1, appears across all three levels. The bundle of vessels
in the neck (marked by arrow 2) are properly discriminated at the finest scale. (e) A multi-
level tessellation of (overlapping) blocks from the three scales shown in (b)-(d) selecting
only linear features using the parent-child decision scheme (see main text). (f) Same as (e)
with this time takingmax(cl; cp) allowing planar features to be incorporated (e.g. surface
features marked 3 and 4).
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to then connect together the elements of the object representation based on continuity and
labelling of features across neighbouring blocks. We are currently investigating both a
maximum-likelihood iterative estimation method to improve the initial feature estimates
obtained from the Fourier approach described here and, a stochastic scheme to achieve a
global description of the objects [10].
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