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Abstract

Point distribution models have been successful in describing the shape
constraints on two dimensional objects for shape description and image
search. It is often the case that a class of objects to be modelled
contains certain features which may be wholly present or absent in
different instances. Moustaches on faces are a common example. Here
we describe a method of coding the presence or absence of a feature
within the PDM framework. We show that the method captures the
intermittent nature of the feature as one of the modes of variation, and
demonstrate that, where features are intermittently present, greater
model specificity is achieved.

1 Intermittently Present Features

There are classes of images that exhibit features which are only found in some
instances and not others. Examples include face images which may or may not
show moustaches and/or glasses and histological sections, in which structures may
appear in a proportion of contiguous slices in a stack. The particular example
that led to the approach described here is the study of electron microscope images
of nerve capillaries. There are several concentric layers of structures in capillary
cross-sections (figure 1). The central region is the lumen: the space through which
blood cells pass; this is surrounded by a layer of endothelial cells, and then the
basement membrane. In disease condition, such as diabetic neuropathy, changes
occur in the normal structure of the capillaries, including constriction of the lumen.
In some cases the lumen can become so constricted as to be unidentifiable (figure
1(b)). Finding the boundaries between these structures is important in quantifying
disease status and we have approached this task using Active Shape Models and
Genetic Search for the Basement Membrane / Endothelial Cell (BMEC) boundary
[6]. The lumen boundary is potentially easier to locate due to the clearer contrast,
but in modelling it we need to take account of the fact that it is often missing.
To use Active Shape Model search we need to build Point Distribution Models

(PDMs) of all the structures in the capillaries, including the lumen, when it is
present. We have considered three possibilities for dealing with the intermittent
presence of the lumen: Separate models for capillaries with and without a visible
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Figure 1: Examples from the set of diabetic nerve capillary data

lumen; a Segmented model in which each separate boundary has a flag for pres-
ence or absence; or a Single model in which each point is flagged for inclusion or
exclusion individually. We prefer the third option as it allows us more flexibility
in admitting arbitrary patterns of inclusion, and is more likely to capture the re-
lationships between different components, for example, the gradual inclusion of a
new feature across a stack of histological slices. The difficulty presented by this
approach is in training a PDM with arbitrarily missing data points.

2 Data Imputation

Our approach to building models with arbitrarily missing data points is to include
in the PDM the coordinates of those boundary points that are present, and to
estimate the positions of the points that are not represented in some examples.
This problem of data imputation - estimating missing data values - is a fairly com-
mon one in statistical applications, and a number of methods have been proposed
(Rubin [5]). In adopting a method, our goal is to end up with a PDM (means and
eigenvectors of the point positions) as close as possible to those we would have ob-
tained had all the data been available. In this section we describe our own, novel,
method of data imputation and evaluate its performance in comparison with three
other well-founded methods with a view to their suitability for PDM building.

2.1 Imputation Methods

Replacement with mean: The simplest method is to replace each missing value
with the mean of the values that are present. This clearly underestimates the
variance in the data – a serious disadvantage for building PDMs.
Principal Component Analysis: Dear [4] proposed an imputation technique in
which initial imputation with the means is then re-estimated using the first prin-
cipal component of the imputed data. In this way, gross trends in the data are
preserved.
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Maximum Likelihood : Beale and Little [1] present an iterative method to produce
a maximum likelihood estimate of the missing values using a form of the Expec-
tation Maximisation (EM) algorithm. Before this algorithm can begin, an initial
estimate of the missing data must be generated. A sensible initial value is the
mean over all available data. The algorithm can be extremely sensitive to the
quality of this initial estimate as is shown in the evaluation in section 2.2.
Iterated PCA: We have developed a further method of imputation, designed to re-
tain data characteristics required by a subsequent PCA carried out on the imputed
data. Specifically, we wish to impute values in such a way as to retain relation-
ships found in the original data and do this without reducing the total variance.
The algorithm is based on an iterative version of Dear’s [4] PCA imputation with
several modifications and can be described with the following equations:

(Pxm,µx,σ2

xm, bxm) = pca(x,m) (1)

x̂ = µx + bxmPxm
T , xi.Mi

= x̂i.Mi
(2)

where x is the original data, xij is the jth observed value in example i, Mi

is the set of variables missing in example i, xi.Mi
is the set of estimated missing

values from xi and pca is a function that computes the firstm principle components
(Pxm), the variance each mode represents (σ

2

xm) and the mean (µx) of x, together
with the associated reconstruction parameters (bxm) for each example.
We begin by initialising x, for which we use mean value imputation, and cycle

through equations 1-2 until convergence. Choosing the value of m is crucial to
the well-mannered convergence of the algorithm. We use the following scheme:
m is set to 1 and the algorithm is run to convergence. The imputed data is now
consistent with data patterns represented by the first mode of variation, but no
others. To include relationships represented by other modes we increase m by 1
and repeat the convergence, starting at the result of the previous iteration. At
each stage of the iteration we are including effects of higher modes in the imputed
data, and matching it more closely to the original data patterns. However, the
imputed data itself also has some influence on the modes produced by PCA. As
we continue to include higher modes we will eventually reach one which is mainly
influenced by the effect of the imputed data, after which the algorithm will not
converge. Rather, the imputed data would be updated to reinforce the effects of
earlier imputed data. We therefore need a stopping criterion. In our experiments
we continue iterating until :

∑

σ2

xm
∑

σ2

x

> p (3)

where σ2

x is the variance of all modes of x and p is the proportion of com-
plete data examples. This stopping criterion is somewhat heuristic, and has not
been shown to be optimal. However, it leads to satisfactory performance in the
evaluation experiments.
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2.2 Evaluation of Imputation Methods

Each of the imputation methods described in section 2.1 was evaluated using
synthesised data and some real shape data from annotated capillary boundaries.

Synthetic data: fifty vectors, each with ten elements, were constructed using
the following algorithm:

for i = 1 to 50

xi = (i, 2i, 3i, ..., 10i); xi = xi + ir; x = concat xi with x

The intention of this data is to evaluate the ability of an imputation method to
retain the underlying relationships in the data. There is one consistent relationship
for each vector, namely the increment in successive values, proportional to the first
element. The relationship is not perfect, being perturbed by the random factor r

(between -0.5 and 0.5), also scaled by the first element in each vector, i. These
vectors do not represent shapes, but give an insight into the effectiveness of the
methods in reconstructing patterns in the data corrupted by noise and missing
elements.

Nerve capillary landmark data: Here we use a subset of 30 examples of the
marked-up BMEC boundaries from capillary images. We take the first 30 points
in each case. This data gives an insight into the performance of the imputation
methods on realistic data.

Evaluation tests: In each case we remove a proportion (varying between 1%
and 50%) of the data points and replace them with imputed values according to
each of the four schemes. To measure the effectiveness of the imputation we make
two measures on the resulting data. Firstly we measure the Euclidean distance
(in the vector space of the data) between each example and its imputed version,
giving a measure of the raw error in the imputation process. Secondly, as we are
interested in preserving the modes of variation of the original data we measure
the Euclidean distance between the corresponding eigenvectors of the original and
imputed data sets. In the case of the synthetic data, there is only one significant
mode of variation, and only one eigenvector. In the case of the capillary data,
we estimate this distance for the first three eigenvectors. For the synthetic data,
there is a third measure we can make. In this case we know the underlying ”ideal”
relationship between the elements of each vector before corruption by randomi-
sation. It is interesting to see how well the imputation process reconstructs this
underlying relationship in the presence of the noise. We therefore measure the
distance between the ideal vector and the imputed vector in each case.
Results of the evaluation are shown in figure 2.2. The iterated PCA method

gives the closest imputation to the original data in both cases. For the synthetic
example, the maximum likelihood (EM) method gives almost identical results (fig
2(a)). In the case of the capillary data (fig 2(b)), however, the PCA method
comes closest to the performance of iterated PCA, though noticeably worse at
higher proportions of imputed data. In calculating the distance between the raw
and imputed eigenvectors, both iterated PCA and EM again perform equivalently,
and much better than the other methods, and PCA and iterated PCA give similar
performance on the capillary data. The maximum likelihood estimates for impu-
tation are influenced strongly by the initial estimates of the missing data (in this
case the mean values). This is a poor estimate in the case of the capillary data and
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results in the poor performance in this case. The structure in the variation of Eu-
clidean distance between imputed and original modes of variation, with increasing
proportion of imputation, seen in figures 2(c) and 2(d), is due to the significant
effect that small changes can have on an eigen-analysis of the data. Figure 2(e)
shows the difference between the ”ideal” synthetic data and the imputed values
after randomisation. The distance between the ”raw” randomised data and the
underlying data is, of course, independent of the quantity of imputation being
applied and therefore constant. Both the EM and iterated PCA methods retain
a good estimate of this distance in the presence of up to 50% imputation, and
therefore seem to be responding to underlying patterns in the data. The other
methods, as might be expected from figures 2(c) and 2(e), do not. Figure 2(f)
shows the difference in total variance between the original and imputed capillary
data. The iterated PCA method retains the total variance of the data even in the
presence of large amounts of missing data. The other methods all perform poorly
on this measure.
The iterated PCA method appears to have the desired properties of an impu-

tation scheme. Other methods also have these properties for one or other of the
test cases, but not both. Mean imputation was always, of course, unlikely to meet
our criteria, but has been included to give a yardstick for measuring inadequate
performance.

3 Modelling Shape and Structure

Here we describe how we combine data imputation with a model of structural
variation. As our models constitute a variant of PDMs we call them Structured

Point Distribution Models (SPDMs).

3.1 Building the models

The modifications that need to be made to a standard PDM to deal with inter-
mittent structures are the following. We build a model that assumes all points
are represented (our capillary model would assume a lumen, a face model might
assume the presence of a moustache). When a PDM landmark point is not rep-
resented in a particular image it is replaced by a placeholder (such as NaN - a
computational representation of Not a Number). Once the training set has been
assembled, the shapes are aligned using the data points that are available, and
the missing data values imputed by some imputation scheme (we prefer iterated
PCA, of course). So an initial training vector for a shape i represented by points
[(x1, y1), (x2, y2), (x3, y3), (x4, y4)] where (x3, y3) is unobserved, is represented as

the data vector: xi = (x1, x2, NaN, x4, y1, y2, NaN, y4)
T
. Following alignment

and imputation of missing values we get a new shape vector (primed elements

are aligned, hat elements are imputed): x̂′

i = (x
′

1, x
′

2, x̂3, x
′

4, y
′

1, y
′

2, ŷ3, y
′

4)
T
. Shape

parameters, bs are then calculated by PCA in the usual way [3].
While this gives us a model of shape that represents as closely as possible the

shape variation we observe in the entire structure, we have lost the structural in-
formation about which boundary points may or may not be missing. We therefore
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Figure 2: Imputation performance. (a),(c),(e) – synthetic data, (b),(d),(f) – cap-
illary images. Error is shown as a function of increasing proportion of imputed
data. (a),(b) – raw error. (c),(d) – error in principal components. (e) error in
capturing the ”ideal” data pattern. (f) difference in total variance (see text).

(a)

(b)

Figure 3: Synthetic shape. (a) examples from the set of synthetic training data.
(b) the first mode of variation.
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augment the shape vector with a binary structure vector. For our shape i above
with point 3 missing the structure vector would be: xs

i = (1, 1, 0, 1)
T
.

This gives us a representation of the structure containing significant redun-
dancy, but which allows for arbitrary patterns of inclusion or exclusion of land-
mark points in the model. This redundancy can be reduced using PCA, just as in
the case of classical PDMs. The modes of the PCA represent the relationships be-
tween the structures in the landmark data. In the case of the capillary boundaries
the analysis results in a single mode, containing almost all the variance, repre-
senting the presence or absence of the lumen at its extremes. We have therefore
reduced our structure vector to a parameter vector of length 1. The SPDM like
the PDM is a generative model; that is, given a parameter vector we can recreate
the structure vector for a particular instance. The disadvantage of this approach is
that we are representing a binary process (presence or absence) by a linear model.
To recover binary parameters in the reconstructed structure vector we threshold
the individual elements. We use a threshold that represents the probability that
a particular feature point will be present in the image.
The PCA of the structural data matrix xs results in a matrix of continuous

structure parameters bd, which can then be used, together with the shape param-
eters bs to build the combined model of shape and structure. This is done in a
way similar to the construction of Active Appearance Models [2].
For each training example we generate a concatenated vector:

b =

(

b̂s

bd

)

(4)

where b̂s is a matrix of shape parameters generated after first shifting and scaling
the input (imputed) data to lie between 0 and 1. We perform this scaling to
avoid problems associated with shape and structure being measured on different
scales. In choosing to perform this transformation on the data, we are effectively
treating shape and structure as equally important. A combined model of shape
and structure is obtained by a further application of PCA.

c ≈ Qb (5)

whereQ is a matrix of t eigenvectors expressing the correlations between the shape
and structure data in vector b and c is a vector of combined model parameters
which controls both the shape and structure of the data. We can obtain b from c:

b = QT c (6)

From these equations we can produce the shape and structure vector of any
shape represented by the model.

3.2 Evaluation

We evaluate our approach to shape and structure modelling using a synthetic shape
set, nerve capillary images and face images. Firstly we demonstrate that presence
or absence of structure is represented in the model, and that correlations with
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shape data are captured. Secondly we demonstrate that modelling the presence
or absence of structures increases the specificity of the model.

Synthetic data: A set of synthetic shapes was generated using the following
algorithm.

generate a random number r, between 10 and 30

form a kite from the points [(r, 50), (50, 90), (100, 50), (50, 10)]
if (r < 25) form a square, centred (50, 50), with side length 100− 2r
otherwise put 4 NaN values in the data vector

This generates a set of structures consisting of squares within kites (see figure 2).
The first coordinate of the kite and the size of the square are correlated. When
the size of the inner square would be less than 0 the feature is not present in the
image. The proportion of complete to incomplete structures is 5:1. The SPDM
built from 50 training examples, retaining 99.5% of variation has only one mode
of variation shown in figure 2(a). The shape model has captured the correlation
between the size of the square and the shape of the kite, and the thresholding of
the structure vector has removed it at the relevant places.

Nerve Capillaries: An SPDM was calculated from 38 nerve capillary images, 15
of which contained lumens so constricted that they are practically undetectable, so
that only the BMEC boundary was annotated. Examples of the shapes are shown
in figure 4(a). The 99.5% of data retained produced 6 modes of variation, the first
three of which are shown in figure 4(b). Note that all the structural information is
contained in the first mode of the model. The second expresses lumen constriction
and the third appears to be capturing the translation of the lumen within the
capillary.

Faces: Figure 3.2(a) shows some examples from a set of 29 face images marked
up with 33 landmarks on the face outline, eyes nostrils and moustache (present in
nine out of the 29 faces). Figure 3.2(b) shows the first two modes of variation. Once
again the first mode represents the structural variation and the others represent
shape variation.

Model Specificity : The inclusion of the lumen structure into the model of nerve
capillaries is intended to contribute additional constraints to the model during
search, i.e. to increase its specificity. To measure the specificity of the models, we
used the 38 training examples of capillaries and 29 face images to build SPDMs and
PDMs retaining 99.5% of observed variability in each case. From each training set
we created increasingly invalid shapes by randomly perturbing the point positions
in the training examples using the following algorithm.

for i=1 to 25

for each training example x

xir = x+
ix̄r
100

; b = Qxr; x̂ir = Q
T b

This creates, for each training example, twenty five increasingly invalid shapes
obtained by adding a random shift to each point. If we try to fit the model to the
invalid data, a highly specific (constrained) model will find the nearest valid shape,
whereas a less- specific model will fit more closely to the invalid example. For our
purposes, we measure closeness as the mean point to point distance between the
model fit landmarks and the corresponding annotation landmark.
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Figure 5 shows the fits of SPDM and PDM models of capillaries and faces to
the unperturbed(valid) and perturbed(invalid) data, with increasing random per-
turbation. In each case the model shows some specificity by fitting more closely to
the nearest valid example than the perturbed version. However, for both capillary
and face shapes, the effect is more marked for the SPDM, indicating increased
specificity of the structural model.

4 Conclusions and Discussion

We have presented an extension to Point Distribution Modelling to deal with
circumstances in which features of the objects to be modelled may be wholly
present or absent in a proportion of examples. Our method combines the use of
a structure vector, which is subject to the same statistical analysis as the shape
vector, and imputation of values for model points which are coded as absent in
the structure vector. We have developed a straightforward method for imputation
which causes minimal distortion to the distributions of shapes in the original data.
Using experiments on synthesised data and data from real images we have shown
that the Structured Point Distribution Models successfully capture the variation in
shape and structure present in an image set and the correlations among these, and
that the use of the structured models improves the specificity of the model over the
classical PDM. Although not demonstrated in this short paper, the method can
be applied to Appearance Models [2] also, and model the grey level appearance of
intermittently present features.
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Figure 4: Faces. (a) examples from the set of face shape training data. (b) first
two modes of variation. Note that the first mode encapsulates the structure of the
missing data.
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Figure 5: Capillaries. (a) examples from the set of nerve capillary training data.
(b) the first three of six modes. Note that the first mode encapsulates the structure
of the missing data.
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Figure 6: The curves show the mean point to point landmark distance for both
PDM and SPDM model fits to the original shape (annotations) and perturbed
examples (random). (a) capillaries, (b) faces.


