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Abstract

Statistical shape models have been used widely as a basis for segmenting
and interpreting images. A major drawback of the approach is the need to
establish a set of dense correspondences across a training set of segmented
shapes. By posing the problem as one of minimising the description length
of the model, we develop an efficient method that automatically defines cor-
respondences across a set of shapes. Results are given for several different
training sets of shapes, showing that the automatic method constructs signif-
icantly better models than those built by hand - the current gold standard.

1 Introduction

Statistical models of shape have been used widely as a basis for segmenting and inter-
preting images [4]. The basic idea is to establish, from a training set, the pattern of
‘legal’ variation in the shapes and spatial relationships of structures in a given class of
images. Statistical analysis is used to give an efficient parameterisation of this variability,
providing a compact representation of shape, allowing shape constraints to be applied ef-
fectively during image interpretation [4]. One of the main drawbacks of the approach is,
however, the need - during training - to establish a dense correspondence between shape
boundaries over a reasonably large set of example images. It is important to establish the
‘correct’ correspondence, otherwise an inefficient parameterisation of shape can result,
leading to difficulty in defining shape constraints. In practice, correspondence has often
been established using manually defined ‘landmarks’ - a time-consuming, subjective and
error-prone process.

Several previous attempts have been made to automate model building [1, 2, 6, 7,
8, 9, 10, 13] . The problem of establishing dense correspondence over a set of training
boundaries can be posed as that of defining a parameterisation for each of the training
shapes, leading to an implicit correspondence between equivalently parameterised points.
Different arbitrary parameterisations of the training boundaries have been proposed [1, 9] ,
but do not address the issue of optimality. Shape ‘features’ (e.g. regions of high curvature)
have been used to establish point correspondences, [2, 8, 13] but, although this approach
corresponds with human intuition, it is still not clear that it is in any sense optimal. A third
approach, and that followed in this paper, is to treat finding the correct parameterisation
of the training shape boundaries as an explicit optimisation problem.

The optimisation approach has been described by several authors [3, 6, 10]. The basic
idea is to find the parameterisation of the training set that yields, in some sense, the ‘best’
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model. Kotcheff and Taylor [10] describe an approach in which the best model is defined
in terms of ‘compactness’, as measured by the determinant of its covariance matrix. The
parameterisation of each of a set of training shapes is represented explicitly, and a genetic
algorithm search is used to optimise the model. Although this work showed promise,
there were several problems: the objective function, although reasonably intuitive, could
not be rigorously justified; the method was described for 2D shapes and could not easily
be extended to 3D; it was sometimes difficult to make the optimisation converge; and it
did not address the issue of pose transformations.

In this paper, we define a new objective function with a rigorous theoretical basis that
is defined in an information theoretic framework. The key insight is that the ‘best’ model
is that which describes the entire training set as efficiently as possible, thus we adopt a
minimum description length criterion. We also describe a novel, continuous representation
of correspondence/parameterisation that can be efficiently optimised to produce models
that are significantly better than those built by hand.

2 Statistical Shape Models

A statistical shape model is built from a training set of example shapes [4]. Each shape,���������
	���������
, can (without loss of generality) be represented by a set of

���������
points

sampled along the boundary. A variation of generalised Procrustes analysis is then per-
formed to align each member of the training set to a reference shape by finding the rigid
pose parameters that minimise the sum of squared distances between the points. By con-
catenating the coordinates of its sample points into a

�
-dimensional vector, � , and using

principal component analysis (PCA), each shape vector can be described by a linear model
of the form

� ������������ � (1)

where
�� is the mean shape vector, the columns of P describe a set of orthogonal modes

of shape variation and b is a vector of shape parameters. New examples of the class of
shapes can be generated by choosing values of b within the range found in the training
set. This approach can be extended to deal with continuous boundary functions [10], but
for clarity, we limit our discussion to the discrete case.

The utility of the linear model of shape shown in (1) is dependant on the set of bound-
ary parameterisations  �! �#" that are chosen. An inappropriate choice can result in the
need for a large number of modes (and corresponding shape parameters) to approximate
the training shapes to a given accuracy and may lead to ‘legal’ values of b generating ‘il-
legal’ shape instances. For example, consider the two models generated from a set of 17
hand outlines, shown in figure 1. Model $ uses a set of parameterisations of the outlines
that cause ‘natural’ landmarks such as the tips of the fingers to correspond. Model % uses
one such correspondence but then uses a simple arc-length parameterisation to position
the other sample points. The variance of the three most significant modes of models $
and % are (1.06, 0.58, 0.30) and (2.19, 0.78, 0.54) respectively. This suggests that model
$ is more compact than model % . All the example shapes generated by model $ using
values of b within the range found in the training set are ‘legal’ examples of hands, whilst
model % generates implausible examples as illustrated in the figure.
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Figure 1: The first three modes of variation ( ����� ) of models $ and %

The set of parameterisations used for model $ were obtained by marking the ‘natural’
landmarks manually on each training example, then using simple path length parameter-
isation to sample a fixed number of equally spaced points between them. This manual
mark-up is a time-consuming and subjective process. In principle, the modelling ap-
proach extends to 3D, but in practice, manual landmarking becomes impractical. We aim
to overcome this problem by building statistical shape models automatically from a set of
training shapes.

3 Automatic Model Building

We wish to optimise the parameterisations  �! �#" of each shape in our training set  � �#" .
Since we wish to obtain a compact model with good generalisation ability, we formulate
the problem as one of finding the minimum description length of the training shapes.

The configuration space of  �! �#" is highly non-linear and has many local minima.
Although stochastic optimisation techniques such as simulated annealing and genetic al-
gorithms search for a truly global minima, they take many hours to converge. We over-
come this problem by optimising  �! �#" using a multiresolution approach. This allows a
local optimisation method to be used at each resolution. We have used the Nelder-Mead
simplex algorithm [12] to produce the results in section 4.

3.1 An Information Theoretic Objective Function

We wish to define a criterion for choosing the set of parameterisations  �! � " that are used
to construct a statistical shape model from a set of training boundaries  ���#" . Our aim
is to choose  �! �#" so as to obtain the ‘best possible’ model. Ideally, we would like a
model that is general (it can represent any instance of the object - not just those seen in
the training set), specific (it can only represent valid instances of the object) and compact
(it can represent the variation with as few parameters as possible). We therefore choose
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to follow the principle of Occam’s razor : the simplest explanation generalises best. In
our case, we need to find the simplest explanation of the training set. We formalise this
by stating that we wish to find  �! �#" that minimises the information required to code the
whole training set,  � � " .

Suppose we have a set  � �#" of


training shapes that are parameterised using  �! �#"
and sampled to give a set of

�
-dimensional shape vectors  � �#" . Following (1) we can

approximate  � � " to an accuracy of � in each of its elements using a linear shape model
of the form

� �#���� ����� � ��� � (2)

Where
�� is the mean of  � � " , P has � columns which are the � eigenvectors of the

covariance matrix of  � � " corresponding to the � largest eigenvalues ��� , � � is a vector
of shape parameters, and � � is a vector of residuals. The elements of � � can be shown to

have zero mean and a variance of ��� �
	� �������� 	 ��� over the training set.

The total information required to code the complete training set using this encoding
is given by

����������� � � �!��"$#%� �  �$& �  � � (3)

Where
� �!��"$#%�

is the information required to code the model (the mean vector,
�� , and

the eigenvectors of the covariance matrix, P),
� &

is the average information required to
code each parameter vector � � , and

� � the average information required to code each
residual vector, � � .

For simplicity, we assume that the elements of the mean
�� and the matrix P are uni-

formly distributed in the range [-1,1], and that we use '�� bits per element for the mean
and '(� bits per element for the ) ��* column of � giving quantisation errors �(� � ��+-,�.
and ��� � ��+-,�/

respectively. Thus

� �!��"$#%� � � '0� � �
�1
�� 	 '(� (4)

The elements of � � are assumed to be normally distributed over the training set with
zero mean and variance �2� . To code them to an accuracy � & , we require on average

�$& � �1
�� 	43 '

& �65 � 748 90: � �<;�= ��� �%> (5)

Where '@? �BADC�EGF�� �G? � . All logs are base 2.
Similarly, to code the

�
elements of � � to an accuracy of �GH � ��+-,�I

we require on average

� � � �
3 'J� �65 � 748 90: � �<;�= ��� �%> (6)

Substituting (4), (5) and (6) into (3) we obtain

����������� � � '0� � �
�1
�� 	 '(���

 �1
�� 	43 '

& �65 � 748 90: � �<;�= ��� �%> � �� 3 'J���K5 � 748 90: � �<;�= ��� �%> (7)
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�����������
is a function of the quantisation parameters '�� , '(� , ' & , and 'J� , which are

related to � , the overall approximation error. Since we wish ultimately to minimise
�(���������

with respect to  �! �#" we need first to find the minimum with respect to the quantisation
parameters. This can be found analytically, leading to an expression in terms of


,
�

, ' ,� and  <��� " .
����������� � A 5 � 7 ��� � � � �  � ��8 90: � 	�� � ��� ���� � �� ' �65 � 7 ��� � �� �1

�� 	
8 90: � ��� �

� 5 � 7 � �8 90: � � ��� � �65 � 7� ��� � � ��8 90: � �<;�= � A 5 � 7� � 8 90: � ��
(8)

where � � � �������� + 	�� + � � � + � � � .
Thus, for a fixed number of modes, � , to optimise

�G���������
we need to minimise

	 � � ������� �  � �1
�� 	

8 90: � ��� � � 3
��� DA 	�� A � ��� � ��%>G8 90: � ��� � (9)

Note that this is independent of � . Finally, the number of modes, � , should be chosen
to minimise

�����������
. Since � must be an integer, this can be achieved using a simple,

exhaustive search to find
	 � � � . Note, however, that the average information required to

code 
 � , the ) ��* element of the shape vector b
�
, is ' & � 5 � 748 90: � �<;�= ��� � . This must be

greater than zero, which imposes an upper bound on � such that �-��� 	�� � ��� � � �<;�= � .	 � � � , the minimum of
	

with respect to � can be used to asses the quality of a given
model.

3.2 Optimisation of Parameterisation

We select corresponding points by uniformly sampling the parameterisation, ! �� � , of each
shape - see figure 2. We wish to manipulate the set of parameterisations  �! �#" in a way
that minimises the value of

	 � � � . The method described in this section is applicable to
both open and closed curves; for clarity, we will limit our discussion to the closed case.

Figure 2: How a shape is sampled according to its parameterisation. The sampled points
depend on the shape of the parameterisation function, !

A legal reparameterisation function ! �� � is a monotonically increasing function of

,

with a range
� 5�� ! �� � � 	��

. Such a function can be represented as the cumulative



8

distribution function of some normalised, positive definite density function � ��� � , where
! �� � ��� �� � ��� ����� .

We choose to represent � ��� � as a sum of Gaussian kernels:

� ��� � ��	�
 	 � 1
� $ �
�
�� � �<; ��������� A 	

�
���� ��� A�� � � ����� (10)

where the coefficients $ � control the height of each kernel; �
�

specifies the width and� �
the position of the centre and

	
is the normalisation constant. We include the constant

term to ensure that when all $ � ’s are zero, ! �� � is an arc-length parameterisation.
Given this representation of � ��� � , we calculate ! �� �

! �� � ��� �
� � ��� ����� ��	 
  � 1

� $ �� �! #" �  A�� �
�
�%$ � � � 1

� $ �� �! #" � � �
�
�%$ � �&� (11)

')( �! � 	 + 	 � 	 � 1
� $ �� �! #"�� 	 A*� �

�
�%$ � � � 1

� $ �� �! #"�� � �
�
�%$ � � (12)

+-,�. �! #" ��� � � �$ ; �0/� = + H1 ��2 (13)

We manipulate the parameterisation by varying  �$ � " , the heights of the kernels; the
widths  � � " and the positions  � �#" are fixed. If we use

� , kernels to represent the pa-
rameterisation, the configuration space becomes (

� ,  )-dimensional. This search space is
generally too large for a direct optimisation scheme to converge rapidly and reliably. We
overcome this by using the following multiresolution approach:3 We begin with a single kernel of width � 	 � 	4 , centred at

� 	 � 	� on each shape.
The height, $ 	 of the kernel on each shape is initialised to zero - equivalent to
an arc-length parameterisation. We employ an optimisation algorithm to find the
magnitude $ 	 , of the kernel on each shape that minimises

	
.3 At each subsequent iteration ' , we add an additional

��,G+ 	
kernels of width

	4 � 	� � , .

The new kernels are positioned at intervals of
	� , between

 � 5 and
 � 	

so that
they lie halfway between the kernels added on previous iterations. The optimisation
algorithm is used to find the best height for each kernel.3 We continue recursively adding additional kernels until the parameterisation is suit-
ably defined.

The pose of each shape affects the value of
	 � � � . We therefore need to optimise the four

parameters that allow a rigid transformation of each shape: translations
� /65 �87 , scaling

and rotation 9 . We have found, however, that adding an additional :  dimensions to
each iteration significantly slows the optimisation and introduces many additional false
minima. Better results can be achieved by performing a procrustes analysis [5] of the
reparameterised shapes inside the objective function, before calculating the value of

	 � � � .
In the experiments reported below, we have assumed that a correspondence exists

between the origins of each shape in the training set. If we do not have such a corre-
spondence, (11) must be modified so that ! �� �<;>=@? ��! �� �#A�B!9 . 	 , where

?
specifies the

offset of the origin.
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Although we do not give details here, this approach can be extended to reparameter-
ising the sphere and the plane, allowing 3D statistical shape models to be constructed.

4 Results

We present qualitative and quantitative results of applying our method to several sets of
outlines of 2D biomedical objects. We also investigate how our objective function behaves
around the minimum and how it selects the correct number of modes to use.

4.1 Results on 2D Outlines

We tested our method on a set of 17 hand outlines, 38 left ventricles of the heart, 24 hip
prostheses and 15 cross-sections of the femoral articular cartilage. The algorithm was
run for four iterations, giving 16 kernels per shape. A MATLAB implementation of the
algorithm takes between 20 and 120 minutes, depending on the size of training set .We
compare the results to models built by equally-spacing points along the boundary and
hand-built models, produced by identifying a set of ‘natural’ landmarks on each shape.

In figure 3, we show qualitative results by displaying the variation captured by the first
three modes of each model (the first three elements of b varied by �

�
� ). We also give

quantitative results in table 1, tabulating the value of
	 � � � and the total variance.

Figure 3: The first three modes
� ) ��	 5 ) � � 5 ) � �

�
of variation

�
�
�
�
�
of the automati-

cally generated models
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Hands Hip Prostheses
Automatic Hand Built Equally-spaced���
6.32 9.92 17.18� .�� � 6645 8177 9072

Automatic Hand Built Equally-spaced���
6.08 13.7 13.2� .�� � 3377 16443 11366

Knee Cartilage Heart Ventricles
Automatic Hand Built Equally-spaced���
8.31 10.7 11.3� .�� � 2478 3517 3567

Automatic Hand Built Equally-spaced���
4.9 14.1 14.6� .�� � 885 1360 1470

Table 1: A quantitative comparison of each model
	 � � � , the value of the objective func-

tion and
���

, the total variance.

The qualitative results in figure 3 show that the shapes generated within the allowed
range of b are all plausible, this suggests a specific model. The quantitative results in table
1 show that our method produces models that are significantly more compact than either
the models built by hand or those obtained using equally-spaced points. It is interesting
to note that the model produced by equally-spacing points on the hip prosthesis is more
compact than the manual model. This is because equally-spaced points suffice as there is
little variation, but errors in the manual annotation adds additional noise which is captured
as a statistical variation.

Figure 4: Leave one out tests. The plot shows the number of modes used against the mean
squared approximation error

To test the generalisation ability of the models, we performed leave-one-out tests on
each model described in table 1. In figure 4, we report the results on the hand outlines
although the same trends appear in all datasets. As can be seen from the figure, the op-
timised model performs significantly better than both the manual and arc-length param-
eterised models for the entire range of included modes, suggesting better generalisation
ability.

4.2 The Behaviour of the Objective Function

To demonstrate the behaviour of our objective function we took some corresponding
points from the automatically generated hand model and added random noise to each
one. Figure 5 shows a plot of

	 � � � against the standard deviation of the noise. The plot
shows that as the points are moved further away from their corresponding positions, the
value of

	 � � � increases - the desired behaviour.
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4.3 Selecting the Number of Modes

We used the automatically generated heart model to show how the number of modes
affects the value of the objective function. Figure 6 shows a plot of

	
against the number

of modes used in the model. The values form an approximate quadratic with a minimum
at nine modes which captures approximately 93% of the total variation.

Figure 5:
	 � � � increases with the s.d. of

random perturbations of the ‘optimal’ cor-
respondences

Figure 6: The values of
	

for a model built
with different numbers of modes.

5 Conclusions

The results reported in this paper show that the automatically produced models are signif-
icantly more compact and more specific then the models built by hand - the current gold
standard. The qualitative results in figure 3 show that the automatically produced models
look specific. We are currently working on deriving quantitative measures of specificity.

We have derived an objective function that can be used to evaluate the quality of a
statistical shape model. The expression we use has a theoretical grounding in Information
Theory, is independent of quantisation error and unlike other approaches [6, 10], does
not involve any arbitrary parameters. The objective function includes a

� 8 90: � � � � term
which is equivalent to the product of the � � ’s, (and thus the determinant of the covariance
matrix) as used by Kotcheff and Taylor [10], but the more complete treatment here shows
that other terms are also important.

Regular Principal Component Analysis can not capture non-linear variations (e.g caused
by a sub-part rotating in the plane) with a single mode - this affects the generalisation abil-
ity, specificity and compactness of such linear models. The method described in this paper
overcomes this by allowing points to ‘slide’ along the parameterisation to compensate for
the non-linear movement - this allows the variation to be explained by a single mode.

Our ultimate aim is to build 3D statistical shape models for use in biomedical research.
Although we do not give details here, the principles described in this paper extend to 3D
shapes. A limitation of our current reparameterisation function is that it is not smooth
at the point

�� � 5 5 	�� . Although this makes no difference to 2D shapes, it will have a
significant effect on 3D shapes. We intend to overcome this problem by using alternative
kernel functions such as the wrapped Gaussian or the wrapped Cauchy [11].
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