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Abstract

This paper describes a method for visual control of the zoom setting of an active camera during
tracking. The method assumes an affine projection, and tracking is achieved using affine trans-
fer, a process which is fundamentally invariant to zoom. However, the form of the projection
matrices determined to achieve transfer allows the relative scale between the affine bases in dif-
ferent views to be determined, and hence controlled at unity. Unlike its projective equivalent,
the method requires no self-calibration, the zooming camera may move quite generally, and no
restriction need be applied to the nature of the scene being viewed.

The performances of 3D and 2D versions of the algorithms are examined using synthetic

data under varying levels of noise and under varying degrees of degeneracy in motion and struc-

ture. Real-time results are presented from imagery of laboratory scenes and off-line results

obtained from an outdoor surveillance video sequence.
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1 Introduction
The motions of a camera-lens combination used to track objects under surveillance, or
to follow the action in a televised sporting event, are typified by substantial rotations,
small or zero translations, and zooming in and out. By comparison with the considerable
attention lavished on automated tracking of the scene motion, automatic zoom control is
a rather unexplored area. However, it is an area which progress over the last few years in
the theory of structure from motion and self-calibration of cameras lays open to practical
investigation.

Under human operator control, camera zooming is initiated in two ways, as illustrated
in figure 1. The first we call purposeful zooming, where some higher level process indi-
cates that it would be valuable either to zoom in to collect more object detail, or to zoom
out to obtain surrounding context. The other way zooming is used is more reactive. In
this case, the camera operator adjusts the zoom to preserve the “image size” of the target
object as it moves away from or towards the camera. All of us will have watched broad-
casts where skilled camera-work has enhanced the information flow to the viewer (and
vice versa): there seems every reason to suppose that a similar autonomous capability
will be of benefit to a computer vision system. This paper explores methods of achieving
the second, reactive, type of zoom control under affine viewing conditions appropriate for
most surveillance applications.

But first image size must be considered more carefully. Were the camera observing
a spinning disc with rotation axis a constant distance from the camera, it would be quite
inappropriate for the zoom lens to oscillate in and out. Under perspective projection the
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Figure 1: Purposeful zooming (left), compared with reactive zooming (right). In the
former zooming depends on higher intent – the recognition of a passer-by; in the latter the
scene is effectively in charge – the cameraman maintains the apparent size of the object.
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Figure 2: (a) Imaging geometry for the perspective case, used to argue for the preservation
of f/Z. (b) Weak perspective projection modelled as projection onto a fronto-parallel
plane before scaling.

simplest sketch of a fixated plane, such as the disc, is enough to convince one that the ratio
of focal length f to depthZ of the fixation point should be preserved by changing f when
Z changes. A slightly more elaborate explanation for the case of a non fixating camera
(figure 2a) is that, rather than preserving image area, one should preserve the ratio ρ of
image area to scene area projected along the ray direction. The solid angles subtended by
the image and scene patches at the optic centre are equal and so it is

ρ =
da cosφ
dA cosΦ

=
(
f

Z

)2

that should be preserved, where φ,Φ are the angles between the ray and the image and
surface normals, and Z is the depth of the patch.

In earlier work [12] we applied this constraint to perspective cameras, where the cam-
era must be calibrated. Self-calibration methods for special cases of motion and structure
are of help here. We utilized that of Agapito et al [1] requiring the camera motion to be
purely rotational (common for wall-mounted cameras). If the object is planar, the method
of Malis and Cipolla [7] allows calibration from the target itself. However, maintaining
the calibration over extended periods is burdensome. In our case [12], lack of sufficient
image data for calibration while tracking often necessitate use of a calibration look-up
table refreshed by self-calibration during “idle” moments.

In most visual tracking, object relief is small compared to the object’s distance from
the camera and the image projection can be approximated as affine. The burden of cal-
ibration is eased and the zooming camera may move quite generally while viewing an
arbitrary scene. In this case, f/Z is again the appropriate measure to be preserved, with
Z interpreted as the depth of the fronto-parallel plane onto which rays are projected or-
thogonally before being projected perspectively (fig. 2b). For the general affine camera
this measure generalises to the scaling of the affine bases, as is made clear later.
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2 Review: Tracking using Affine transfer
Tracking in our work is achieved using affine transfer [9, 2], a method which takes ad-
vantage of the viewpoint invariance of single image features and the collective temporal
coherence of a cloud of such features, without requiring features to exist through entire
sequences. The method is fundamentally invariant to zoom [4, 5], and thus independent of
errors in zoom and whether the zoom control is reactive or purposive. Furthermore, trans-
fer also provides tolerance to features appearing at and disappearing from the edge of the
image as a wider or narrow view is taken. Overlaying the zoom-variant control process on
top of a zoom-invariant tracking competence seems attractive from an architectural stand-
point. The optimisation with respect to the Frobenius norm required to achieve transfer
with more than the minimal point set was shown in [9] to be identical to Tomasi and
Kanade’s factorisation method [11], and so it is convenient to use the latter’s standard
formulation.

An unregistered image point p in frame i, x ip, is projected from the homogeneous
scene point Xp as xip = MiXp + ti , and registered points formed by subtracting the
centroid xip ← xip − ci where ci =

∑
xip/P . From the P point correspondences

established over I frames, affine structure and motion is recovered in batch mode by
singular value decomposition of the 2I × P registered measurement matrix

UΣV� ← W =


 x1,1 ·· x1,P

: :
xI,1 ·· xI,P




and by imposing its rank-3 property in zero-noise to find the optimal affine projection
matrices and structure from the ordered columns of U and V

0
@

M1

:
MI

1
A = (σ1u1 σ2u2 σ3u3) ;

0
@

X1
�

:
XP

�

1
A = (v1 v2 v3) .

For affine transfer, given registered gaze points g i in the first i = 1, . . . , I − 1 frames,
the 3D position of the gaze point G is found using the pseudo-inverse from

G =


 M1

:
MI−1




+
 g1

:
gI−1




and the gaze point transferred to the latest frame F using g I = MIG. In practice we use
the minimum I = 3 frames.

3 Recovering relative scale

3.1 Scale from Euclidean constraints in three views

In inhomogeneous coordinates using registered image points and assuming no pixel skew,
one sound affine projection of a Euclidean structure is x = MEXE with

ME = S

(
1 0
0 1/α

)(
R11 R12 R13

R21 R22 R23

)
,
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where α is the aspect ratio and the R’s are elements of the 3× 3 rotation matrix between
the world frame and the camera frame. For a weak perspective camera, S = f/ Z̄, where
Z̄ is the mean depth of the points in the camera frame.

The affine structure is related to the Euclidean structure by an affine transformation,
HXE = X, and similarly each M is related to its Euclidean counterpart by MH = ME . But
the form of ME ensures that for the i-th frame [11]

MiHH�Mi
� =

(
p q r
s t u

)
i


 h1 h2 h3

h2 h4 h5

h3 h5 h6




 p s
q t
r u




i

= S2
i

(
1 0
0 1/α2

)
. (1)

Matrix HH� is symmetric and hence has 6 degrees of freedom. Assuming we know
the aspect ratio, for I frames there are I values of Si but only (I − 1) d.o.f., as the
overall scale is unknown. For each frame the above system gives three equations linear
in the parameters, and so 3I ≥ 6 + I − 1 or I ≥ 3 to solve. The minimum, I = 3,
is conveniently also the minimum required to achieve 3D affine transfer for tracking.
Note too that as only the motion given by the projection matrices M is used, one can use
the cheaper eigen-decomposition of UΣ2U� ← WW� rather than the SVD of W to recover
scale. Again this computation is all that is required to maintain fixation [9].

To recover both relative scales and the transformation HH�, we set S1 = 1, construct
the matrix

D =

0
BBBBBBBBBBBB@

p2
1 2p1q1 2p1r1 q2

1 2q1r1 r2
1 0 0

p1s1 p1t1 + q1s1 p1u1 + r1s1 q1t1 q1u1 + r1t1 r1u1 0 0
s2
1 2s1t1 2s1u1 t21 2t1u1 u2

1 0 0
p2
2 2p2q2 2p2r2 q2

2 2q2r2 r2
2 −1 0

p2s2 p2t2 + q2s2 p2u2 + r2s2 q2t2 q2u2 + r2t2 r2u2 0 0
s2
2 2s2t2 2s2u2 t22 2t2u2 u2

2 − 1
α2 0

p2
3 2p3q3 2p3r3 q2

3 2q3r3 r2
3 0 −1

p3s3 p3t3 + q3s3 p3u3 + r3s3 q3t3 q3u3 + r3t3 r3u3 0 0
s2
3 2s3t3 2s3u3 t23 2t3u3 u2

3 0 − 1
α2

1
CCCCCCCCCCCCA

,

and solve the following equation for S2,3 and h = (h1, . . . , h6)� using SVD:

D


 h

S2
2

S2
3


 =




1
0
1

α2

06


 .

The transformation H can be recovered from HH� by Cholesky decomposition, although
this is unnecessary for zoom control.

3.2 Scale from epipolar geometry and two views

Although transfer requires three camera matrices, it is possible to recover structure and
scale from just two [6, 10]. Here, matrices M2 and M3 are the obvious choices. Shapiro
et al describe how the spacing of the parallel epipolar lines under affine projection are
characteristic of the scale, at least once the images are corrected for known aspect ratio
[10]. From the entries in the affine fundamental matrix

x�
3 F

A
23x2 = x�

3


0 0 a

0 0 b
c d e


x2 ,
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where e = 0 if the image points are registered, the relative scale is recovered as

S3/S2 =
√

(c2 + α2d2)/(a2 + α2b2)

where α is again the aspect ratio1. The elements of the fundamental matrix can be found
directly from the camera matrices as determinants of four 3× 3 minors involving rows 3
to 6 of the joint projection matrix [8] to the left of the ‘|’ in

 M1 x1

M2 x2

M3 x3


(X
−λ
)

= 06 .

These determinants describe the epipoles e23 = (d,−c, 0)� and e32 = (b,−a, 0)�,
where the ratio of coefficients in x and y directions gives the direction of epipolar lines,
and the magnitude of the epipole their (relative) spacing. The scale change from, for
example, image 2 to image 3 is expressed in terms of the rows m j

i of the projection
matrices Mi

S3

S2
=
‖e23‖
‖e32‖ ej

23
def=




det


m1

2

m2
2

mj
3


, j ∈ {1, 2}

0, j = 3

3.3 Scale from image-based methods

Although we have earlier argued against image-based methods, it is nonetheless worth-
while exploring how such approximations perform.

One approximation is to suppose that as the 3D affine transformation H is the same for
all three views in a batch, its contribution to scale cancels out between images. That is,
taking ratios of the determinants of the matrices in Equation (1)

det(MiHH�M�i )
det(MjHH�M�j )

=
(
Si

Sj

)4

≈ det(MiM�i )
det(MjM�j )

.

The determinant of MiM�i gives the square of the area spanned by the rows of M i. The
approximation is equivelent to scene-based scale recovery when H is close to identity or
Mi and Mj are related only by an image (z-axis) rotation.

As the introductory example of the spinning disc showed, there are situations where
using relative area — and hence the ratio of determinants — is less than ideal. Better
would be to approximate the change in a single dimension of the object, ideally along the
projection of the rotation axis in the image.

The individual singular values of MiM�i describe the dimension of the affine bases in
the maximum direction and a direction perpendicular to it. The 2-norm of a matrix is
equal to its largest singular value, and so the squared change in maximum dimension is
given by the ratio of 2-norms

(
Si

Sj

)
size

≈
(
‖MiM�i ‖2
‖MjM�j ‖2

)1/2

.

1The expression in [10] omits explicit mention of the aspect ratio.
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This distance measure obviously changes with rotation unless the axis of rotation happens
to coincide with the major affine basis. However, as only one dimension is considered this
method can cope with planar objects turning side-on to the camera, the situation which
causes problems for all the previously described methods.

4 Experiments using Synthetic Data
In the experiments using synthetic data, a cluster of 20 scene points is distributed ran-
domly within a cube and moved by incremental random rotations and to random depths
before projection using weak perspective onto the image plane. Gaussian noise was added
with standard deviation equal to some percentage of the spread of points in the image.
(This recipe simulates a constant uncertainty in pixels were the camera to be re-zoomed
in between frames.)

Figure 3a shows the recovered scale factor S3/S1 plotted against the inverse ratio of
mean depths Z̄1/Z̄3. Points should lie on the unit slope line, and from this graph all
methods appear to perform well over a large range of relative scale changes.

The relative robustness of the various methods as the level of noise is increased is
illustrated in figure 3b. Here we take the ratio of recovered scale to actual scale for each
of a 1000 trials at every noise value, and determine the mean µ and standard deviation σ
of the error when compared to Z̄1/Z̄3.

If the inter-frame rotation becomes small, or the object has little depth variation, then
the rank of the measurement matrix, rank(W), drops to two. Figure 3c shows the case of
the object rotation decreasing to zero with image noise fixed. As one would expect, purely
image-based measures are most accurate with little rotation, and the scene-based methods
work equally well across the full range. Note that the errors seen for the image-based
methods are not random but correspond directly with changes in the object orientation —
for instance a spinning object gives regular oscillations.

The final test of figure 3d has fixed noise and rotation but the 3D point structure
is reduced from being a cube to being a plane. These results, and examination of the
singular values, suggest that effective planarity is achieved when the third dimension is
less than 10% of the other two. For thicknesses below 10% the scene-based methods
degrade rapidly giving unpredictable (σ large) and biased (µ �= 0) results. As expected,
the 2-norm method is little affected as only one object dimension is required. We now
examine this situation in detail by considering purely planar objects.

5 The planar case

5.1 Scene-based methods

Without loss of generality, the scene points are assumed to lie on a plane XE = (X,Y, 0).
We write the rotation into the camera frame as R and recover planar affine motion [9] using
Tomasi and Kanade. The planar transfer process is analogous to the 3D method, but we
cannot complete the analogy for scale recovery. We reach the point

MiHH�M�i = S2
i

(
1 0
0 1/α

)
Ni

(
1 0
0 1/α

)

but, unlike the 3D case, matrix Ni is not the product of a rotation with its transpose and
hence not an identity matrix.
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Figure 3: (a) A scatter plot of recovered scale factor vs actual scale factor for 1% image
noise. (b) The mean value µ and standard deviation of the error in the ratio of recovered
to actual scale for 1000 tests of each scene (top) and image (bottom) method as a function
of increasing noise. (c) As (b) but with fixed noise of 1% and as the inter-frame rotation
is decreased. (d) As (b) but with fixed noise of 1%, rotation of 5 ◦ per frame and as the
scene is reduced from a cube (unity thickness) to a plane (zero thickness).

One can analyse N directly using the elements of the 3 × 3 rotation matrix, but an
alternative is to parameterise the rotation as a success of rotations by angles γ around the
z-axis, β around the y-axis, and δ around the x-axis. Then the matrix is

Ni =
(

cos2 β − sin δ sinβ cosβ
− sin δ sinβ cosβ sin2 δ sin2 β + cos2 δ

)
i

,

actually independent of γ. Although there are range constraints on the various elements,
the only2 hard constraint is that the matrix’s larger eigenvalue λU (Ni) is unity. It is no
longer possible to recover the transformation H.

We fare no better with the epipolar method, as the 3× 3 minors of the joint projection
matrix now each have zero determinant. Although a fundamental matrix can be calculated
between views, the magnitude of the elements no longer gives the scale as in [10].

The reason both scene-based methods fail is that image matches alone are no longer
sufficient to constrain the motion. For instance, it is possible for a rotation about the
image y-axis plus scaling to give the same point motions as a rotation about the image
x-axis plus an opposite scaling . Unless either object structure or motion is known we
must resort to image-based measures.

5.2 Image-based methods

For a truly planar object it is clear that as the object turns side-on to the camera its area
drops to zero, and the determinant of MM� is an unsuitable measure (as was seen in figure

2The three different elements of the symmetric matrix are given by two angle parameters.
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Figure 4: Corner features detected, individually tracked, segmented and then collectively
fixated during zooming.
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Figure 5: The toy robot moves towards the camera, but the camera zooms out to maintain
f/Z. The background can be seen shrinking away from the foreground subject. The graph
shows the change in normalised focal length and depth, the latter measured by hand.

3d)). The 2-norm method however does remain valid and stable, because when the pro-
jection of plane degenerates into a line the largest singular value reflects the line’s length.
Moreover, as only the largest singular value is taken into account in both 2D and 3D 2-
norm methods, there is no difference between taking the 2-norm of degenerate 3D affine
projection matrices and taking the 2-norm of 2D projection matrices. The conditions un-
der which the scale recovered in this way accurately reflects the scene-based scale are the
same as those for the 3D case (z-axis rotation plus scaling, or HH� equal to identity).

As a final point we note that tracking using affine-transfer does not degrade when
the motion or object is planar, and there is little advantage to switching to planar affine-
transfer [9].

6 Results from real imagery
The synthetic results above indicate that image-based measures give improved robustness
to large noise, but will deviate from true f/Z tracking when the target turns. Ideally we
would like to be able to switch to a scene-based method during turns, and use image-
based methods during planar motion. At frame rate (25Hz) where scene motion between
frames will be small, the motion is likely to appear planar except during swift turns.
Detecting structural planarity is important and requires use of the 2-norm method, but
may be difficult as both structural and motive planarity cause the third singular value to
be small.

The methods described have been incorporated into a real-time affine-transfer based
tracking system, enabling study of results both on- and off-line, and recovering scale with
optional feedback to the zoom-lens.

As input xi into the affine transfer algorithm we use corners features detected [3] and
tracked individually over time, and segmented between foreground and background using
a modified version of the MLESAC algorithm [13]. Figure 4 shows video-rate feature
recovery, segmentation, and affine transfer tracking of a waving hand. The camera is
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Figure 6: Top row: stills from a surveillance sequence during which the actual zoom set-
ting was fixed. Corner features were detected, tracked and segmented, and the foreground
points fed to the 3D affine transfer and scale recovery algorithm. The cross marks the fix-
ation point. Along the lower row are images which are digitally zoomed using the scale
factor recovered.
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Figure 7: Left: the recovered scale varying over time, with circles marking the stills
shown above. Right: the logarithm of the 2nd and 3rd singular values as a function of
time, indicating that most of the motion might as well be regarded as planar. The truck
is turning between frames 10 and 40, but the third singular value does not rise enough to
switch methods.

zooming during this, but arbitrarily and not under control.
In contrast the sequence in figure 5 shows the camera lens automatically zooming out

to compensate as the toy robot approaches the camera. The motion was repeated 10 times,
and the error bars show one standard deviation either side of the mean for each position.

The last reported experiment in figure 6 shows the results from zoom control as a
truck is tracked approaching and leaving a road junction. The top row of figures shows
a number of stills from a sequence as captured from a non-zooming surveillance camera,
with the fixation point shown.

Figure 7(left) shows the relative scale factor recovered from the imagery, and the lower
row of figure 6 shows images digitally zoomed by the relative scale from the determinant
method. The right graph of figure 7 shows the 2nd and 3rd singular values of the registered
measurement matrix, indicating that motion is effectively planar throughout the sequence.
When the van is turning, scale recovery should be via either of the scene-based methods,
but detecting this case is not possible from the third singular value. If more frames were
used in the affine-transfer the rotation would be easier to detect, but at the expense of
reducing the number of features existing in all frames.



62

7 Discussion and conclusions
In this paper we suggest that automatic zooming may be as valuable as automated tracking
in enhancing the visual information content of video supplied to a computer vision system.
We have developed the geometric constraint which compensates for depth motion by
zooming, a constraint which is applicable to both perspective and affine projections.

We have described algorithms for 3D and 2D automatic zoom control under affine
projection, and have demonstrated their performance using synthetic data and using real
imagery. A real time implementation of the entire process has been demonstrated using
a laboratory bound active stereo rig, and the applicability to surveillance footage shown
using off-line processing, post-capture.

Use of the affine approximation is justifiable in most surveillance and broadcasting
environments, and it allows recovery of relative scale without knowledge of camera posi-
tion or internal calibration. The invariance of the affine-transfer method to scale changes
means that the tracking and zooming competences can be treated as independent, even
though the zoom control part uses information from the tracking part.

In the strictly affine planar case there is not enough information to correctly determine
scale, but we have shown that a simple approximation still permits reliable scale recovery.
However, for real-time applications the short time between frame capture often makes the
object motion appear planar, making detection of structural planarity difficult.
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