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Abstract

Osteoporosis is a common disorder characterised mainly by low bone mineral
density (BMD), and leading to an increased risk of fracture. We have
developed a new device that estimates BMD from ordinary hand radiographs. A
crucial element of this method is the reconstruction of the metacarpals. This
paper describes how this was solved using the Active Shape Model (ASM).
Standard ASM is unable to locate the metacarpal shafts due to the lack of
dynamics in the direction along the bones. Therefore ASM was extended with a
translation operator, which solved the problem. A hierarchical filtering method
was used to construct a sufficient list of initial guesses for the ASM. The
performance of ASM and the experience with the integration of ASM in a
commercial medical device is reported. The ASM achieves 99.5%
reconstruction success and is able to validate its own reconstruction in 97% of
the cases. The system (Pronosco X-posure system, version 2.0) has been
approved by the FDA, and more than 100 units have been sold.
     The concept of the translation operator is generalised to the
More Active Shape Model (MASM), which also allows a natural
integration with the Active Appearance Model.

1 Introduction
Osteoporosis is a condition of reduced bone mass (and to some extent also poor bone

architecture), which affects the whole skeleton to a similar degree and leads to a reduced
strength of the bone and therefore an increased risk of fractures, in particular at the hip,
the vertebrae and the wrist. Approx. 20% of all women suffer an osteoporotic hip
fracture in their lifetime, while men are affected at a 5-10 percent level. Osteoporosis
can to a large extent be prevented. For instance, the frequency of hip fracture is reduced
by typically 50% by medication. The diagnosis requires measurement of the bone
mineral density (BMD) - the weight of calcium per projected bone area - but the
percentage of people diagnosed is very inadequate. The most common diagnostic
method today is dual energy X-ray absorptiometry (DEXA), which is performed on large
dedicated scanners. There is a need for alternative, more accessible methods of BMD
measurement, and we have therefore developed a new method, Digital X-ray
Radiogrammetry (DXR) that estimates a BMD value from an ordinary radiograph of the
hand. The system determines DXR-BMD in the shafts or the three middle metacarpals as
indicated in figure 1. In these regions the bone has the structure of a cylindrical tube and
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the width W and cortical thickness t can be determined with very high precision and
accuracy. BMD is then estimated from the formula

DXR-BMD = c  π  t  (1 – t /W)

where c  can be interpreted as the mineral mass per volume of compact bone.

Figure 1: A standard hand image, and the regions of BMD determination

2   The machine vision problem
This paper addresses the machine vision problem of reconstructing the three shafts

from which the DXR-BMD measurement is performed. This appears at first to be a
rather easy task but the system must be able to work robustly on an extremely wide
range of biological variations and technical conditions. Figure 2-4 show examples of
images where the ends of the bones appear differently, where the exposure is extreme or
where the placement of the hand is unusual.

In general the reconstruction must work irrespective of the appearance of the image
outside the sub-region containing the three shafts. Thus, it cannot be assumed that
metacarpal 1 or 5 or the phalanges are in the image - the recognition must be based on
the appearance of the shafts themselves. No particular exposure level, contrast or
particular orientation of the hand can be assumed, and the system must determine
whether it is a left or a right hand.

The resolution of the image is given; usually it is 300 pixels per inch.
The reconstruction must have excellent sensitivity, i.e. it must detect the three

metacarpals if they are present.
The reconstruction must also have excellent specificity, i.e. it should reconstruct only

metacarpals 2,3,4 and not reconstruct other groups objects that have some similarity
with metacarpals 2,3,4.
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Figure 2-4: Illustrations of the variability of the images to be reconstructed

3 The method

3.1 Selection of model - the Active Shape Model
Humans receive a lot of guidance in reconstructing by viewing the surroundings, and

smoothly switching between using whatever extra information is present in the images.
This is a very complex strategy, which is hard to automate, why the machine vision
solution instead uses only the information contained in the shafts themselves. This
requires a much more limited knowledge and experience of the anatomy, which is easier
to implement.
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The requirements of high sensitivity and high specificity led to adopt the active shape
model combined with an exhaustive search for initial locations for the ASM. ASM is
well known to be specific and the exhaustive search complements ASM by giving high
sensitivity.

The active shape model was formulated by Cootes and his collaborators in 1992 [1].
Its general application for medical images was presented in 1994 [2], and Edwards
applied ASM to reconstruct hand X-rays of children already in 1994 [3]. Since then, the
adaptation of ASM in medical applications has been relatively slow. The most serious
application published so far is in reconstruction of vertebrae for detailed diagnosis of
osteoporosis [4]. There is no reason for this slow adoption by applications: ASM is easy
to understand and implement and it does not require a lot of CPU or RAM.

In 1998 Cootes and collaborators launched AAM [5], which is more powerful, more
complicated, and more computer-intensive. Hopefully this will not divert interest from
ASM – both ASM and AAM will have a role to play in the future. ASM recognises the
objects based on edge signatures in the image, while AAM matches the complete
intensity distributions. Sometimes edges are the most important, at other times the
intensity patterns are important – and sometimes both are important. Section 5 presents
an improved version of ASM, called the More Active Shape Model or MASM. It is also
guided by edges but uses elements of AAM. This model is a step towards merging ASM
and AAM to a more complete model.

3.2 The ASM machinery
The primary dynamical variables in ASM are a set of marks (points) defined on

boundaries or landmarks of the object. The marks define the shape to be reconstructed.

Annotation

To construct the model, these marks must be placed manually on a set of training
examples. Although this annotation task may seem tedious, it is in fact an efficient way
to acquire knowledge from an expert.

Shape alignment and PCA

The shapes of the training set are aligned using Procrustes analysis, and a principal
component analysis (PCA) is used to describe the variation of the aligned shapes among
individuals.

Initialisation

New images are reconstructed in the following manner. The algorithm is initialised by
placing the average shape approximately correct on the image.

Moving shape to edges

The image is now sampled at each mark on a linepiece perpendicular to the shape
boundary. This sample is searched for a match to an edge model. The match is defined
either by maximum gradient, or by minimum distance to an edge signature based on a
Mahalanobis measure derived from the training set specifically for each mark. The latter
is the most efficient, but requires more computation. The marks are moved to the found
edges, thus generating a new shape.
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Regularising the shape

The best fit of the marks to the shape model is now found (this requires an iterative
procedure). The shape model has four Euclidean (or pose) parameters and a number of
principal component shape scores. The scores are not allowed to exceed 3 standard
deviations. The shape is now replaced with this regularised shape.

Thus reconstruction proceeds in this way by alternating between moving the shape to
the edges and regularising the shape until convergence.

Details of the model

The actual implementation of ASM uses 103 training examples of women age 20-80
from USA, China and Denmark. It works in a 75 dpi resolution, and uses 8 principal
components.

The noise of the one-dimensional samplings perpendicular to the marks is reduced by
utilising a five pixel wide band rather than a single-pixel wide line. The first iterations
use maximum gradient to define the edge while the later iterations use Mahalanobis
distance to an edge signature defined by a 11-window containing the gradients
normalised by the sum of their absolute values, as in standard ASM. The extent of the
line search is reduced in the later part of the convergence.

3.3 Initialisation of ASM for metacarpal shafts
ASM is not a complete recognition method, because the search has a limited basin of

attraction around the correct shape, and it must be initialised within this. There is no
general method that can provide a list of initialisations that is both certain to hit the basin
and at the same time reasonably short.

A method was developed for the problem at hand. It relies on the existence of
characteristic elements or signatures that can be found by simple filtering.

The entire image is searched for occurrences of shafts. This is done by filtering the
image in a reduced resolution with a small template consisting of a white strip in a black
square in 4 different rotations with subsequent finetuning of the direction search near the
maximum of the four. At each pixel is recorded the largest correlation to a shaft template
as well as its angle. These two quantities are combined in figure 5 to a colour image of
the strength and orientation of shafts in the image.

It is conceivable that the brain uses similar preprocessing to form useful
representations of primitives, which are used for various higher-level processing tasks.
For locating faces, Cootes have used the signature of a pair of eyes for a similar
initialisation procedure [Tim Cootes, private communication] and the principle may
work for a wide class for problems.
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Figure 5: The filtering that locates bone shafts

A further search is made in the vicinity of local maxima in this image for the
occurrence of three bones with the proper orientations. This results in a list of guesses,
on average 8 per image. This method is exhaustive, but since filtering is fast (using
Intel’s image processing library) it takes less than two seconds on a 500 MHz PC.
Among 5000 cases the method never misses the correct location of the three
metacarpals, i.e. the sensitivity is 100%.

Figure 6: The manual annotation
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3.4 Annotation
Metacarpals have no natural landmarks, so to define marks, the entire metacarpal

boundary is annotated. The metacarpals are treated one by one:
• The contour is annotated by placing points at rather arbitrary intervals in the

original 300 dpi resolution, illustrated in figure 6.
• The bone axis is defined and bone coordinates are measured along this axis with

coordinate 0% at the proximal end and 100% at the distal end. The axis is defined
as the middle of the bone at coordinates 30% and 70%. This is an iterative
algorithm.

• In the shaft region the marks are placed at evenly spaced bone co-ordinate values,
e.g. at 15, 20, 25,…, 85%. In the proximal/distal ends the marks are placed at the
intersection of lines radiating from the 15/85% point on the axis at evenly spaced
angles, see figure 7. In the end, only marks on the shaft were used, in total 42
marks shown in figure 8.

Figure 7: The algorithm used to transform the annotation points of figure 6 into the
marks for ASM models is.
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Figure 8: The 42 marks used in the ASM, here shown as reconstructed by the ASM.

3.5 The translation operator
The standard ASM cannot easily reconstruct a shape described by the 42 marks in

figure 8. ASM moves the model-shape by moving the marks perpendicular to the
contour. Here, the marks are placed only on the left and right of the object, i.e. there are
no marks in the top and bottom of the object. Therefore, there are no forces to drag the
marks up and down along the bone. ASM has in fact mainly been used for rather
compact objects like faces where shifts in all direction can easily be obtained.

Inspired by AAM, a translation operator was introduced in the following way: A shaft
is characterised by having a minimum width in the middle rather than towards one of the
ends. When the 14 marks of a shaft are sitting too low on the image shaft, there is a
characteristic deviation between the model shape, which has the minimum in the middle,
and the shape inferred by the image edges, which have the minimum off-set from the
centre. The difference of these two patterns of bone widths is proportional to the
translation that will bring the marks into the proper position. Hence this difference is
computed and used to translate the marks. This gives an extremely robust algorithm that
very quickly homes in on the middle of the shafts.

3.6 The quality measures
The specificity of ASM allows it to self-evaluate its reconstruction of the anatomy. A

misfit measure is constructed as the sum of two terms

Misfit = Deformation +  EdgeErrors

“Deformation” is the chi-square / 8 of the standardised shape scores, which has mean
1 on the training set. The scores of the shape model are explicitly truncated during
reconstruction so each term in the chi-square is at most 9 – hence the “Deformation” is
always less than 9.

EdgeErrors is the percentage of marks for which the image edge is more than 0.8 mm
away from the model shape.

The misfit measure is used for two purposes.
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Firstly the ASM is initiated and run to convergence on each of the on average eight
initial guesses given by the filtering method described in section 3.3. The ASM chooses
the solution with smallest misfit.

Secondly this minimum misfit is used as an absolute measure of confidence in the
reconstruction.

The misfit is typically less than 5. If it is larger than 30, the recognition reports no
found object. If the misfit is larger than 15, the system issues a warning and prompts the
user to verify the reconstruction visually.

4 Performance and experience
The algorithm has been tested on more than 5000 images taken in many countries and

on many types of films. Some of the images were 10 years old. The images also included
men, and children down to the age of ten.

The system has high specificity: In 0.25% of the cases the system locates a wrong
structure, for instance it selects metacarpals 1-2-3 instead of 2-3-4.

The system has high sensitivity: In 0.25% of the cases it reports no found object
although it is a valid image of the three middle metacarpals.

In conclusion the system performs correctly on 99.5% of the images.
The system is delivered with a protocol for recording the radiographs, and if this is

followed the performance is better than 99.5%.
The 0.25% wrong reconstructions all occurred in cases where the system did request

a visual check (misfit>15). This request comes up in on average 3% of the cases. This is
a big advantage of the device. The DXA scanners often require the user to correct the
reconstruction manually, which requires trained people. With the ASM, our system is
better suited to routine examination of many patients. The fact that 3% of the cases
requires attention is well received by the users. Often these images are peculiar and the
operator appreciates this awareness to unusual cases and potential problems. This is a
very conspicuous reflection of the power of the underlying specific shape model, which
adds values to the system.

5 A More Active Shape Model, MASM
The translation operator demonstrates that there are more information available from

the line search at the marks than is used in standard ASM. In analogy with AAM one can
formulate a more active shape model that includes all four Euclidean operators, and not
only the single translation operator.

To formulate this model, the coordinates of the marks are denoted x, and the pose of
the shape by the 4-vector t. The aligned marks x’ are related to the unaligned marks
through the Euclidian transformation:

x = Tt (x’)

The shape PCA parameterises the variations of the aligned shapes in terms of the
shape scores bs

x’ = x’mean + Ps bs

Here the columns of the matrix Ps are the first few eigenvectors of the shape variation
PCA. MASM also searches for the edge along a linepiece at each mark, but does not
alter x directly, because in MASM the dynamic variables are (bs, t) rather than x. When
the edges have been located, the signed distances s from the model marks to the image
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edges are collected in a vector s, which is then used to generate the update of
(bs, t) in analogy with AAM:

δ bs = Bs s
δ t = Bt s

This model needs more training than ASM, which only learns the shape modes Ps and
the edge signatures. In addition MASM needs to learn Bs and Bt  by applying known
perturbations to the training examples. Thus MASM contains more knowledge and is
therefore likely to act stronger. The good results with the simple translation operator
used in the densitometry device shows that the use of this extra knowledge can be crucial
in some applications.

Finally, AAM can be run also with (bs, t) as dynamical variables (see section 9.2 of
[6]), and updating these variables based on both edge errors (s) and intensity pattern
errors (δ g in the AAM notation) leads to an algorithm that matches both edges and
intensities simultaneously.

6 Conclusion
ASM is useful for machine vision, but in practice a lot of development needs to be

done to achieve a high performance in the recognition: 99.5%, rather than say 97%.
ASM is appropriate if a high degree of “understanding” is desirable. The extensive

training of the models on a large biological material makes the model behave in an
“experienced” manner. In the context of a medical device, this is an attribute of much
value. The fact that the system can demonstrate its high knowledge in such a
conspicuous way justifies a good measure confidence in the system, that it can
demonstrate its high knowledge content in such a conspicuous way. It also allows the
device to be operated by non-experts, which is essential in routine clinical work.

The approval by the USA FDA and the sale of more than 100 units means that this
device is now an important contribution to the prevention and treatment of osteoporosis.

A theoretical spin-off from this work is the translation operator, which originated as
an ad hoc solution to a limitation of ASM on the particular shapes being reconstructed.
It has been generalised to the More Active Shape Model that helps bridge the ASM and
AAM models and opens for more powerful models that fit both edge and intensity
patterns in the recognition of deformable objects.
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