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Abstract 

This paper extends 2D Active Shape Models to 2D+time by presenting a 
method for modelling and segmenting spatio-temporal shapes (ST-shapes). 
The modelling part consists of constructing a statistical model of ST-shape 
parameters. The model obtained describes the principal modes of variation of 
the ST-shape in addition to certain constraints on the allowed variations. An 
active approach is used in segmentation; an initial ST-shape is deformed to 
better fit the data and the optimal proposed deformation is calculated using 
dynamic programming. The results presented show the proposed method 
detecting ST-shapes in a variety of synthetic noisy data. Preliminary results 
on real data are also reported. 

1 Introduction 
Much work has been done on tracking rigid objects in 2D sequences. In many image 
analysis applications, however, there is a need for modelling and locating non-rigid 
time-varying object shapes. One approach for dealing with such objects is the use of 
deformable models. Deformable models [18] such as Snakes [12] and its variants 
[4,8,9,14,16], have attracted considerable attention and are widely used for segmenting 
non-rigid objects in 2D and 3D (volume) images. However there are several well-known 
problems associated with Snakes. They were designed as interactive models and 
therefore rely upon a user to overcome initialisation sensitivity. They were also designed 
to be a general model showing no preference for a particular object shape other than 
those that are smooth. This generality can cause unacceptable results when snakes are 
used to segment objects with shape abnormalities arising from occlusion, closely located 
but irrelevant structures, or noise. Thus, techniques which incorporate a priori 
knowledge of object shape led by Active Shape Models (ASM) [6] were introduced. In 
ASM the statistical variation of shapes is modelled beforehand in accordance with a 
training set of known examples. In order to attack the problem of tracking non-rigid 
time-varying objects, deformable models were extended to dynamic deformable models 
[13,17,15]. These describe the shape changes (over time) in a single model that evolves 
through time to reach a state of equilibrium where internal forces, representing 
constraints on shape smoothness, balance the external image forces and the contour 
comes to rest. Deformable models have been constructed by applying a probabilistic 
framework and led to techniques such as ‘Kalman snakes’ [20]. Motion tracking using 
deformable models has been used for tracking non-rigid structures such as blood cells 
[13] and much attention has been given to the human heart and the tracking of the left 
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ventricle in both 2D and 3D [17,15]. In addition to tracking rigid objects, previous work 
focused on arbitrary non-rigid motion and gave little attention to tracking objects 
moving in specific motion patterns, without the incorporation of statistical prior 
knowledge in both 2D and time [2]. 
 In this paper, we present a new method for locating spatio-temporal shapes (ST-
shapes) in image sequences. We extend ASM [6] to include knowledge of temporal 
shape variations and present a ST-shape modelling and segmentation technique. The 
method is well suited to model and segment objects with specific motion patterns, as in 
cardiography, optical signature motion recognition, and lip-reading for Human 
Computer Interaction (HCI). 
 In order to model a certain class of ST-shapes, a representative training set of 
known shapes is collected. The set should be large enough to include most of the shape 
variations we need to model. Next, all the ST-shapes in the training set are 
parameterised. A data dimensionality reduction stage is then performed by capturing 
only the main modes of ST-shape variations. In addition to constructing the ST-shape 
model, the training stage also includes the modelling of grey-level information. The task 
is then to locate an ST-shape given a new unknown image sequence. An average ST-
shape is first initialised, ‘optimal’ deformations are then proposed, and then the 
deformations are forced to agree with the training data. The proposed changes minimize 
a cost function that takes into account both the temporal shape smoothness constraints 
and the grey-level appearance constraints. The search for the optimum proposed change 
is done using dynamic programming. 
2 Method 
2.1 Statistical ST-Shape Variation 
The training set. We collect N  training frame-sequences each with F  frames. The 
training set, 1 2, , , NV V V V� �� �

� �
� , displays similar object motion patterns. 

1 2
( ) , , ,

i i iFiV i V f f f� �� � �
� �

�  is the thi  frame-sequence containing F  frames and 

( ) ( , )i ijVV j i j f� � �  is the thj  frame of the thi  frame-sequence containing the 

intensity value ( , ) ( , , , )ij Vf r c i j r c� �  at the thr  row and thc  column of the frame.  

The ST-shape parameters. We now introduce iS  to denote the parameter vector 

representing the thi  ST-shape. Parameterisation is done using landmarks (other shape 
parameterisation methods may be utilized, e.g. Fourier descriptors [3] or B-Splines 
[19]). Landmarks are labelled either manually, as when a cardiologist labels the heart 
chamber boundaries [6,11], or (semi-)automatically [10]. Each landmark point is 
represented by its ),( yx  coordinate. Using L  landmarks per frame and F  frames per 

sequence, we can write the training set of ST-shapes as 1 2, , , NS S S S� �� �
� �

� , where 

1 2
( ) , , ,

i i iFiS i S p p p� �� � �
� �

�  is the thi  ST-shape containing F  shapes and 

( ) ( , )i ijSS j i j p� � �  is the thj  shape of the thi  ST-shape. ijp  can be written as 

1 1 2 2, , , , , ,ij ij ij ij ij ijL ijLp x y x y x y� �� � �� �
� where ( ,1) ( , , ,1)ijijk Sx p k i j k� � �  and ijky �  
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( ,2) ( , , ,2)ij Sp k i j k� �  are the x ,y  coordinates of the thk  landmark of the shape ijp . 

ST-shapes alignment. Next, the ST-shapes are aligned in order to allow comparing 
equivalent points from different ST-shapes. This is done by rotating, scaling and 
translating the shape in each frame of the ST-shape by an amount that is fixed within one 
ST-shape. A weighted least-squares approach is used for aligning two sequences and an 
iterative algorithm is used to align all the ST-shapes. However, if the observed motion 
patterns in the training sequences span different time intervals, temporal re-sampling or 
aligning that incorporates temporal scaling might be needed. If these differences are 
insignificant, their effects can be interpreted and modelled as shape variations. 
Main ST-Shape Variation Modes. The N  aligned ST-shapes, each of length 2FL  and 
represented by � �1 2, , , NS S S� , map to a ‘cloud’ of N  points in a 2FL  dimensional 
space. It is assumed that these N  points are contained within a region of dthis 2FL  
dimensional space. We call this region the Allowable ST-shape Domain (ASTSD). We 
then apply Principal Component Analysis (PCA) to the aligned training set of ST-shapes 
in order to find the main modes of ST-shape variation. The resulting PCs are the 
eigenvectors kp (1 2k FL� � ) of the covariance matrix of the observations, SC , 

found from S k k kC ��p p  k�  is the thk  eigenvalue of SC  ( 1k k� �
�

� ) and is equal to 

the variance along the thk  PC. The mean ST-shape is calculated as 
1

1 N

i
i

S S
N

�

� � . The 

PCs are normalized to unit length and are mutually orthogonal. 
Model representation. Now, we express each ST-shape, iS , as the sum of the mean 

ST-shape, S , and a linear combination of the principal modes of variation, iPb . This 

gives i iS S� � Pb  where ,1 ,2 ,2
T

i i i i FLb b b� �� � �� �
b �  and 

1 2 2... FL
� �� � �� �

P p p p . We constrain lb  to min maxl l lb b b� �  with 

min maxl lb b� �  and 1 2l FL� � . maxlb  is chosen to be proportional to l� . Assuming 
that the first t  (out of 2FL ) PCs explain a sufficiently high percentage of the total 
variance of the original data, the fundamental equation becomes 
 S S� � Pb  (1) 

where 1 2 ...
T
tb b b� �� � �� �

b , 1 2 ... t
� �� � �� �

P p p p , and the constraints on b  

become min maxl l lb b b� � , where 1 l t� � . 

2.2 Grey-Level Training 
The information contained in the ST-shape model alone is typically not enough for 
spatio-temporal segmentation. Therefore, additional representative information about 
the intensities or grey-levels relating to the object is also desired and collected in the 
grey-level training stage. In the search stage, new estimates of the ST-shape are sought 
that will better match the grey-level prior knowledge. Different grey-level representative 
information can be used, e.g. gathering the intensity values in the entire patch contained 
within the object [5] or parameterising the profiles or patches around the landmark. In 
this implementation we follow [6] and use a mean normalized derivative (difference) 
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profile, passing through each landmark and perpendicular to the boundary created by the 
neighbouring ones. For the thk  landmark this profile is given by 

 
1 1

1 F N

ijkk
j iFN
� �

� ��y y  (2) 

where ijky  is the representative profile for the thk  landmark in the thj  shape of the thi  
ST-shape. Using grey-level information, temporal and shape constraints, the model is 
guided to a better estimate of the dynamic object hidden in the new frame-sequence. 

2.3 ST-Shape Segmentation Algorithm 
Given a new frame-sequence, the task is to locate the object in all the frames or 
equivalently locate the ST-shape. An initial estimate of the ST-shape parameters is 
chosen at first, then changes to the parameters are proposed. The pose of the current 
estimate is then changed and suitable weights for the modes of variation are chosen in 
order to fit the model to the proposed changes. This is done with the restriction that the 
changes can only be made in accordance with the model (with reduced dimensionality) 
and the training set. New changes are then proposed and so on. Here we present a 
detailed discussion of these steps. 
Initial estimate. The search starts by guessing an initial ST-shape:  
 � �0 0 0 0 0ˆ ,S M s S� � �� � �� �Pb t  (3) 

where x y x y x yt t t t t t� �� � �� �
t �  is of length 2FL . � �� �,M s S� � t  scales, 

rotates, and translates S  by s , � , and t , respectively. Both S  and P  are obtained 
from the training stage. A typical initialisation would set 0b  to zero, and 0s , 0

� , 
and 0t  to values that put the initial sequence in the vicinity of the target. 
Proposing a new sequence. For each landmark, say the thk  landmark in the thj  frame, 

we define a search profile 1 2jk jk jk jkHh h h� �� � �� �
h �  that is differentiated and 

normalized as done with the training profiles. This gives FH  possibilities for the 
proposed positions of the thk  landmarks in the F  frames, see Figure 1. Since locating 
the new positions (one out of 
FH  possible) is 

computationally demanding, 
we formulate the problem as a 
multi-stage decision process 
and use dynamic programming 
[1] to find the optimum 
proposed landmark positions 
by minimizing a cost function. 
The cost function comprises 
two terms: one due to large 
temporal landmark position 
changes, and another reflecting 
the mismatch between the grey-
level values surrounding the 
current landmarks and those 

t

xy

 
Figure 1. An illustration of an ST-shape overlaid on an 
image sequence. The search profiles of one landmark in 
2 frames are shown in white. Examples of proposed 
landmark positions are shown as black squares. 
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expected values found in the grey-level training stage. In the following paragraphs, we 
detail our implementation of dynamic programming. 
 We calculate a grey-level mismatch value ( , )kM j l  for each point along each 
search profile in all the frames according to  
 ( , ) ( ( ) ) ( ( ) )T T

k jk k jk kM j l l l� � �h y W W h y  (4) 

where 1 k L� � , 1 j F� � , 1 l H� � , ( )jk lh  is a sub-profile of length 1G �  

anchored at the thl  location of the search profile jkh , and W  is a weighting matrix. 

Additionally, we calculate a temporal discontinuity value 2
1( , )j jjkd l l

�

, corresponding to 

moving the thk  landmark in frame 1j �  to location 1jl �  and the thk  landmark in 
frame j  to location jl , each along its respective search profile, according to  

 � � � �
2 22

1 1 11 1( , ) ( ) ( ) ( ) ( )j j jj j jjk jkx j kx jky j kyd l l l l l l
� � �� �

� � � �c c c c  (5) 

where 1 2jkx jk jk jkHx x x� �� � �� �
c �  and 1 2jky jk jk jkHy y y� �� � �� �

c �  are the 

search profile coordinates of the thk  landmark in the thj  frame (in our implementation, 
the same temporal discontinuity weight is assigned to all landmarks in all frames. This 
need not be the case, especially when prior knowledge about the typical velocities of 
different regions of the object is available). We compare the accumulated costs of 
moving the thk  landmark to the thl  position in the thj  frame, 2 j F� � , from any of 
the H  positions in frame 1j �  and assign the least value to ( , )kA j l , i.e.  

 � �1 2( , ) min , , ,k jkl jkl jklHA j l t t t� �  (6) 

 ( , ) ( , ) ( 1, )mjklm d jk k kt w d l m w M j l A j m� � � � , (7) 

dw  and mw , satisfy 1mdw w� � , control the relative importance of temporal 
discontinuity and grey-level mismatch. We also assign an index or a pointer, ( , )kP j l , to 
the location of the best landmark in the previous frames. Applying the same procedure 
to the thk  landmark in all the F  frames, yields F H�  accumulated values and F H�  
pointers (no temporal discontinuity cost is associated with the first frame). 
 To find the proposed positions of the thk  landmark in all the frames we find the 
location, call it Fm , of the minimum accumulated cost along the search profile of the 
landmark in the last frame, frame F . Then we use Fm  to find the proposed landmark 
position in the second last frame, frame 1F � , as 1 ( , )F k Fm P F m

�

� . Its coordinates 

will be � �1 1 1 1( ), ( )F kx F F ky Fm m
� � � �

c c . In general the proposed coordinates of the thk  

landmark of the thj  frame will be  
 � � � �, : ( ), ( )j jjkx jkyx y m mc c  (8) 

 1( 1, )j jkm P j m
�

� �  (9) 
 Tracking back to the first frame, we acquire the coordinates of the proposed 
positions of the thk  landmark in all frames. Similarly, we obtain the proposed positions 
for all the landmarks (1 k L� � ), which define the ST-shape changes 0

p̂roposeddS . 
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Limiting the proposed sequence. Since the proposed ST-shape ( 0 0ˆ
p̂roposedS dS� ) 

will generally not conform to our model of reduced dimensionality and will not lie in the 
ASTSD, it cannot be accepted as an ST-shape estimate. Therefore, we need to find an 
acceptable ST-shape that is closest to the proposed one. This is done by first finding the 
pose parameters ( 1s , 1

� , and 1t ) that will align S  to 0 0ˆ
p̂roposedS dS�  by 

mapping S  to � �1 1 1,M s S� � � �� � t , then finding the extra ST-shape modifications 
1dS  which, when combined with the pose parameters, will map exactly to 
0 0ˆ

p̂roposedS dS� . The latter is done by solving the following equation for 1dS  

 � �1 1 1 1 0 0ˆ ˆ, proposedM s S dS S dS� � �� � � � �� � t  (10) 

 � �
11 1 1 0 0 1ˆ ˆ, proposeddS M s S dS S�

� � �� � � �� �� 	
t  (11) 

where � � � �
11 1 1 1 1, ( ) ,M s M s� �

�
�

� � . In order to find the new shape 

parameters, 1b  we need to solve 1 1dS � Pb , which, in general, has no solution 
since 1dS  lies in a 2FL  dimensional space whereas P  spans only a t  dimensional 
space. The best solution in a least-squares sense is obtained as  
 1 1TdS�b P  (12) 
 Finally, using the constraints discussed earlier, min maxl l lb b b� �  where 
1 l t� � , we limit these ST-shape variations and obtain an acceptable or allowable 
shape within the ASTSD. By updating 0b to 1b  we have the new values for all the 
parameters 1s , 1

� , 1b , and 1t . 
Updating the estimate and reiterating. Similarly, new ST-shape estimates can be 
obtained 

 
� �

� �1 1 1 1 1

ˆ ,

ˆ ,

i i i i i

i i i i i

S M s S

S M s S

�

�
� � � � �

� �� � � �� �

� �� � �� �

Pb t

Pb t
 (13) 

for 1,2, 3,i � � . Checking for convergence can be done by examining the changes, i.e., 
if the new estimate is not much different (according to some predefined threshold) then 
the search is completed, otherwise we reiterate. 

3 Results 
We tested the method on synthetically generated data (Figure 2). A single synthetic 
example consisted of an ST-shape and a frame-sequence. The ST-shape data is first 
calculated and then used to generate the frame-sequence. The ST-shapes are represented 
by a set of coordinates describing the shapes in all the frames. Each synthetic ST-shape 
consists of F  frames. Each frame contains L  landmark coordinates. Both the x  and 
the y  coordinates of each landmark move within a sequence according to sinusoidal 
functions with certain amplitudes and frequencies. The positions of the landmarks in the 
first frame and the amplitudes and frequencies of the sinusoidal functions are sampled 
from Gaussian distributed functions with given means and variances. This is done to 
produce similar ST-shapes to be used in the training stage. After the ST-shapes are 
produced, binary images are generated for all the frames in the sequences, by ‘filling’ 
the polygon areas generated from the landmark coordinates. Then the binary frame-
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sequences are smoothed by convolution with a Gaussian kernel. Noise and occlusions 
are added when producing a frame-sequence for testing the search algorithm. 
 To produce image sequences that imitate real-life imagery including artefacts, the 
synthetically generated image sequences used for both training and testing were 
deteriorated in different ways. Some examples of imperfections are shown in Figure 3. 
 In the three examples results presented, the training was performed using 10 image 
sequences. Each sequence consisted of 16 (160x182 pixels) frames. 25 landmarks were 
used to represent each contour in each frame. The grey-level search was conducted on a 
profile of length 41 pixels and the training profile was of length 13. In our model we 
used six ST-shape parameters describing 98% of the total ST-shape variations. 
Following are three examples of the ST-shape segmentation (the frames in the figures 
are ordered from left to right and top to bottom): (1) Missing Frames (Figure 4). The 
result shows that the deformable ST-shape converged to the target object in all the 
frames and reasonable guesses were produced for the separated missing frames. (2) 
Overlapping occlusion (See Figure 5). The result shows that the deformable ST-shape 
converged to the target object overcoming the problem of overlapping occlusions that 
appeared in all the frames. (3) Local noise (Figure 6). The result shows that the 
deformable ST-shape converged to the target object in spite of the presence of strong 
local noise and moderate global noise in all the frames. 
 

   
(a) (b) (c) 

Figure 2. Examples of synthetic spatio-temporal shapes: (a) Circle with translational motion, 
expansion and shrinkage in time. (b) ‘Random star’ with translational motion. (c)‘Sinusoidal star’ 
with translational motion, expansion and shrinkage in time. 

 

(a) (b) (c) (d) (e) 

Figure 3. Examples of synthetic frames with imperfections due to (a) global noise, (b) missing 
frame, (c) overlapping occlusion, (d) touching occlusion, and (e) local noise. 
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Figure 4. Spatio-temporal segmentation example with 3 missing frames and global noise in all 
frames. After 23 iterations the initial ST-shape (overlaid in white on the leftmost 16 frames) 
deforms and detects the moving object (rightmost 16 frames). 

Figure 5. Spatio-temporal segmentation example with overlapping occlusions and global noise in 
all frames. After 15 iterations the initial ST-shape (overlaid in white on the leftmost 16 frames) 
deforms and detects the moving object (rightmost 16 frames). 

Figure 6. Spatio-temporal segmentation example with strong local noise and moderate global 
noise in all frames. After 18 iterations the initial ST-shape (overlaid in white on the leftmost 16 
frames) deforms and detects the moving object (rightmost 16 frames). 
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(a) (b) 

Figure 7. Left-ventricular segmentation result on smoothed real echocardiographic data. Four 
frames are shown with the ST-shape overlaid (a) before and (b) after projection onto the ASTSD. 
 

 
(a) (b) 

Figure 8. Segmenting a 3D astrocyte cell (spatial z-axis replaces time).  (a) The initial shape 
model and (b) the segmentation result overlaid in white on a fluorescence 3D image. 

4 Conclusion 
Motivated by the fact that many image analysis applications require robust methods for 
representing, locating, and analysing time-varying shapes, we presented Deformable 
Spatio-Temporal Shape Models: an extension of 2D ASM to 2D+time. This method 
models the grey-level information and the ST-shape variations of a time-varying object 
in a training set. The model is then used for locating similar objects in a new image 
sequence. The segmentation technique is based on deforming a spatio-temporal shape to 
better fit the image sequence data only in ways consistent with the training set. The 
proposed deformations are calculated by minimizing an energy function using dynamic 
programming. The energy function includes terms reflecting temporal smoothness and 
grey-level information constraints. The method was tested and succeeded in segmenting 
synthetic spatio-temporal shapes in noisy image sequences. We are aware of remaining 
issues. More work is needed in order to assess accuracy, robustness and applicability for 
real-life imagery (specifically, boundary detection in real-time cross-sectional 
echocardiography). Besides our current work on applying the technique to real medical 
data (Figure 7, Figure 8), we are also considering a multi-resolution extension (similar to 
the one presented in [7]) and a time-scaling and time-translation feature. 



22

 

References 
[1] Amini A., Weymouth T., Jain R., Using dynamic programming for solving 

variational problems in vision. IEEE PAMI, 1990, 12(9), 855 -867. 
[2] Black M., Yacoob Y., Recognizing Facial Expressions in Image Sequences using 

Local Parametrized Models of Image Motion. IJCV, 1997, 25(1), 23-48. 
[3] Bonciu C., Léger C., Thiel J., A Fourier-Shannon approach to closed contour 

modeling. Bioimaging, 1998, 6, 111-125. 
[4] Cohen L., On active contour models and balloons. CVGIP: Image understanding, 

1991, 53(2), 211-218. 
[5] Cootes T., Edwards G., Taylor C., Active Appearance Models. Proceedings of the 

European Conference on Computer Vision, 1998, (H.Burkhardt & B.Neumann 
Ed.s). Vol.2, pp.484-498, Springer, 1998. 

[6] Cootes T., Taylor C., Cooper D., Graham J., Active Shape Models - Their training 
and application. Computer Vision and Image Understanding, 1995, 61(1), pp.38-59. 

[7] Cootes T., Taylor C., Lanitis A., Active Shape Models: Evaluation of a Multi-
Resolution Method for Improving Image Search. Proceedings of the British Machine 
Vision Conference, 1994, 327-336. 

[8] Grzeszczuk R., Levin D., “Brownian strings”: Segmenting images with 
stochastically deformable contours. IEEE PAMI, 1997, 19(10), pp.1100 -1114. 

[9] Herlin I., Nguyen C., Graffigne C., A deformable region model using stochastic 
processes applied to echocardiographic images. Proceedings of Computer Vision 
and Pattern Recognition, 1992, pp.534 -539. 

[10] Hill A., Taylor C., Automatic Landmark Generation for Point Distribution Models. 
BMVC, 1994, 2, pp. 429-438. 

[11] Hill A., Thornham A., Taylor C., Model-Based Interpretation of 3D Medical Images. 
Fourth BMVC Conference, 1993, Guilford, England, pp.339-348. 

[12] Kass M., Witkin A., Terzopoulos D., Snakes: Active Contour Models. International 
Journal of Computer Vision, 1988, 1(4), pp.321-331. 

[13] Leymarie F., Levine M., Tracking deformable objects in the plane using an active 
contour model. IEEE Transactions on PAMI, 1993, 15(6), pp.617-634. 

[14] Lobregt S., Viergever M., A discrete dynamic contour model. IEEE Transactions on 
Medical Imaging, 1995, 14(1), pp.12 -24. 

[15] McInerney T., Terzopoulos D., A dynamic finite element surface model for 
segmentation and tracking in multidimensional medical images with application to 
cardiac 4D image analysis. Computerized Medical Imaging and Graphics, 1995, 
19(1), pp.69-83.  

[16] McInerney T., Terzopoulos D., Topologically adaptable snakes. Proceedings of the 
Fifth International Conference on Computer Vision, 1995, pp.840 -845. 

[17] Signh A., Von Kurowski L., Chiu M., Cardiac MR image segmentation using 
deformable models. Biomedical Image Processing and Biomedical Visualization, 
SPIE Proc., Vol.1905, pp.8-28. 

[18] Singh A., Goldgof D., Terzopoulos D., Deformable Models in Medical Image 
Analysis. IEEE Computer Society, ISBN: 0818685212. 

[19] Stark K., Fuchs S., A method for tracking the pose of known 3-D objects based on 
an active contour model. Proceedings of the 13th International Conference on 
Pattern Recognition, 1996, Vol.1, pp.905 -909. 

[20] Terzopoulos D., Szeliski R., Tracking with Kalman snakes. Active Vision, A. Blake 
and A. Yuille (eds.), MIT Press, Cambridge 1992, MA, Ch.1, pp.3-20. 


