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Abstract

Several techniques, such as adaptive smoothing [9, 10] or anisotropic
di�usion [4, 5] deal with the task of local smoothing. That is, preserv-
ing principal discontinuities and smoothing within regions. Unfortu-
nately, these types of iterative techniques have as one of their main
drawbacks, the determination of the threshold on the luminance gradi-
ent. There is no way to control it easily and researchers often fall into
a trial-and-error procedure. In this paper an adaptive Gaussian �l-
ter that computes directly the local amount of Gaussian smoothing in
terms of variance is presented. The local variance, ��(x; y), is selected,
in a scale-space framework, through the minimal description length

criterion (MDL). The MDL allows us to estimate the local smoothing
in such a way that it respects the main discontinuities. The resulting
smoothed image, in location x; y, is the intensity given by the convo-
lution of the initial point I0(x; y) with its appropriate Gaussian kernel

e
�

x
2+y2

2��(x;y) . In fact, the proposed algorithm is not iterative, it is very
stable, it is not based on derivatives nor requires any thresholds.

1 Introduction

Physical boundaries, discretised as variations of intensities, are particularly im-
portant in many low-level vision tasks, i.e. zero-crossings of second derivative,
local curvature, corner and edge detection and even data compression. Detecting
such discontinuities, in a real image, is not a straightforward task, because most of
the algorithms are usually based on the application of derivatives, which are very
sensitive to noise.

Several attempts have been proposed for dealing with noise and preserving
discontinuities. Nonetheless, in most cases, the basic non-linear �lters, such as
median or midpoint algorithms gives poor performance. Actually, techniques such
as adaptive smoothing [9, 10] and anisotropic di�usion [4, 5] provide a better way
to blur within regions and not across discontinuities.

Although these last techniques o�er good results, they have some drawbacks:

� The behaviour is diÆcult to predict.

� It is not clear how to choose the threshold on the luminance gradient.
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� It is diÆcult to estimate the number of required iterations.

The iterative nature of adaptive smoothing or anisotropic di�usion does not
allow to predict the convergence process at all, which is rarely fast.

We present an adaptive Gaussian �lter that computes directly the local amount
of Gaussian smoothing in terms of variance. That is by itself more intuitive than an
evolution of a partial di�erential equation or a successive application of weighted
averaging masks. The smoothing is computed in a way that respects the discon-
tinuities. Moreover, it is not iterative, it is stable, does not require a gradient
stopping function nor any threshold.

The remainder of the article is organised as follows. Section two reviews the
current state of non-linear smoothing algorithms. In section three, our approach is
presented and comparative examples are given in section four. Finally, in section
�ve, we provide some concluding remarks and proposals for future work.

2 Non-linear smoothing and enhancement

Classical non-linear smoothing �lters, such as median or midpoint, o�er advantages
of preserving more discontinuities than a simple arithmetic mean. Although these
techniques are fast, in practice, they show poor results. Current techniques, such
as adaptive smoothing [9, 10] and anisotropic di�usion [4, 5] deal with the task of
enhancing discontinuities and smoothing within regions, at the price of increasing
the computational complexity. Let us review brie
y the basis of these techniques.

2.1 Scale-space techniques

The seminal work of Koenderink [2] was the introduction of the linear scale-space
through the di�usion equation. In other words, the isotropic (when the di�usion
process is equal for every point in the image) scale-space can be seen as the evo-
lution of the partial di�erential equation @I

@t
= r2I through the scale t. Further

improvements of this idea were introduced by Perona et al. [4]. He showed that
isotropic di�usion is a simpli�ed case of the heat anisotropic di�usion equation
@I
@t

= r:crI , where c denotes conductance, which controls the di�usion.
The blurring in anisotropic di�usion is done with the conductance c, which

decreases as a function of the square of the gradient. In other words, points with
\high" gradient are blurred less than points with \low" gradient. In practice
that is not easy to compute, because the equation assumes that the signal is
approximately piecewise constant, and is based on a model of edges as large step
changes in intensity. Consequently, a single threshold on the luminance gradient
can not extract the complete discontinuity, because this could vary unpredictably
over the image or even along itself.

Adaptive smoothing is an iterative technique proposed by Saint-Marc et al.,
[9, 10]. It uses a weighted averaging mask, in spite of simple arithmetic mean,
which changes as a function of local gradient. They argue in favour of repeatedly
convolving the image with a small Gaussian kernel, that is, using the \cascade
property". Notice that their smoothing is extremely slow and it could take an
extremely large number of iterations. Moreover, the adaptive smoothing algorithm
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converges at a piecewise constant image. In this way, it is completely di�erent from
its initial purpose: denoising and enhancing.

One must, however, note that the discrete approximation of anisotropic di�u-
sion is a particular case of adaptive smoothing modifying a couple of weights in
the averaging mask, see [10] for details.

Conceptually, the idea of applying successive weighted averaging masks, as a
function of local gradient, is an interesting approach. Nevertheless, in practice,
both algorithms presents some relevant aspects to be considered:

� The behaviour is still diÆcult to predict. For instance, if we choose close ini-
tial conditions (iterations and thresholds), it does not return close solutions.

� If the gradient threshold is chosen large, most of the discontinuities disap-
pear; clearly, if the threshold is small, all discontinuities are kept, including
noise.

� Their convergence process returns piecewise constant images. Those can take
an extremely large number of iterations for smoothing regions. It implies, in
addition, the selection of the number of iterations.

Further improvements to the original anisotropic di�usion have been developed
[11, 12, 14]. Weickert uses a \tensor valued di�usion". That is, the conductance
c is controlled with the direction of the eigenvectors of the second moment ma-
trix, which are essentially �rst and second order derivatives. The new feature for
reducing the sensitivity to noise has been too costly in terms of execution time.
Whittaker et al. proposes the \vector-valued di�usion". They use multiple partial
di�erential equations, each one computing di�erent properties. In practice, it has
been diÆcult to integrate it [14, 7], and it is still complex to estimate the mutual
in
uence of coupled partial di�erential equations.

As a result, the edge stopping function has become more complex, and even
slower to compute. In fact, new non-linear di�usion �lters have not supplied better
perceptual results than the original edge stopping criterion [5].

Unfortunately, adaptive smoothing and anisotropic di�usion cannot o�er unsu-
pervised smoothing, and we often �t the parameters in a trial-and-error procedure.
A better way for doing unsupervised smoothing is shown in the next section.

3 Adaptive Gaussian �ltering

Many existing algorithms in image processing assume a scale for feature detection,
such as zero-crossings of second derivative, local curvature, corner and edge de-
tection, to name a few. This scale represents a compromise between localisation
accuracy and sensitivity to noise. Obviously, there is seldom a single scale that is
appropriate for a complete image.

The local variance calculated must be useful for, at least, two basic and neces-
sary operations in image processing: noise removal, and facilitating the localisation
of features. Rewriting the last statement, we can say that the local blur, as in
anisotropic di�usion or adaptive smoothing, should smooth directly within regions
and not across discontinuities. More formally, in terms of Bayesian estimation,
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maximising the likelihood of the observed image given the local scale, and at the
same time, minimising the residual.

To see this more clearly, consider a stack of smoothed images or scale-space,
I�1 ; I�2 ; :::; I�n , obtained by convolving the initial image I0 with a set of Gaussian
kernels G� ; � = �1; :::; �n, where I� = I0 � G� . Thus, our objective is to choose
the appropriate scale (�), from the scale-space generated, at each pair x; y. The
criterion for such selection is the optimal coding, which must be the less complex
or minimal, and, at the same time, e�ective for describing the parameter.

In practice, it is straightforward to estimate the optimal code with tools like
the minimal description length principle (MDL) proposed by Rissanen [8, 1].
An image due a Gaussian �ltering can be seen as:

I0(x; y) = I�(x; y)| {z }
Low�Pass

+ "�(x; y)| {z }
Residual

(1)

where the residual, called "�, is the original image minus the smoothed image.
The idea of selecting the minimal description length has been successfully ap-

plied [3, 6, 15] in machine vision for balancing simplicity and accuracy. The min-
imal description length states that the optimal coding deal with the minimum
number of bits that are necessary for maximising the information of both parame-
ters. That is, the maximum smoothness with the minimal residual. Let us rewrite
equation (1) as description length (dl):

dlI0(x;y) = dlI�(x;y) + dl"�(x;y)

3.1 Description length of I�

It is not diÆcult to see that the measure of information, in bits, for I0 is greater
than I� , for � > 0. When � ! 1, the measure of information over I� must be
minimal. The reason for this fact is that the variance � in the Gaussian �lter
controls the amount of information in the scale-space.

In order to calculate a fast approximation of the amount of information in I� ,
we start with the ideal model of low-pass. Allow us to consider the behaviour of
signal amplitude (a) in space (x) and frequency f through the Scaling-Uncertainty
Principle:

Ffs(ax)g =
1

a
S

�
f

a

�
; a 6= 0

Then, the Gaussian distribution in space and frequency takes the form:

e

�
�
!
2
�
2

2

�
= e

�
�

x
2

2�2

�
;�2 6= 0 (2)

Hence, it is clear that the relation between the spatial domain (G�2
x
) is inversely

proportional to the frequency domain (G�2
!
). The relation (2) states that �2

x /
1
�2
!

.

Further, the sampling theorem states that for any signal of frequency f , the number
of samples s (Nyquist rate) needed for reconstructing accurately the original signal
is, at least, 2f . As we know, f / �2

! , that is the frequency f is proportional, given a
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constant (�), to the Gaussian �lter band-width, and it is controlled by its variance
�2
!. Thus, our sampling rate could be rewritten as s = n(��2

!) ;n � 2.
Then, as a consequence of the inverse relation (2), we present the next equation,

showing that the amount of samples needed for describing a smoothed image is
controlled by the spatial variance of the Gaussian kernel. That is:

s = n

�
�

�2
x

�
;n � 2

Although we cannot know in advance how many bits represents each s, we
e�ectively see that it is proportional (s / bits) to the amount of information,
given a constant �. Where � means the precision, in bits, used to represent I� .
We can now summarise the above relations in the following equation:

dlI� = n

�
��

�2
x

�
;n � 2 (3)

Equation (3) estimates the description length, in bits, of a smoothed image given
the spatial variance of the Gaussian �lter. In addition, equation (3) shows that a
correct description length of I� should be computed in a range. The fact that � is
unknown, does not, of course, means that is not possible to compute. In this way,
if we �nd this range, our algorithm becomes completely stable. Having calculated
the �rst part of equation (1) we now show the description length of the residual.

3.2 Description length of "�

Even if we do not know the noise distribution, it will approximate to Gaussian
distribution by the Central Limit Theorem (zero-mean Gaussian density). Thus,
the probability distribution of noise can be written as:

Pr(") = e
�

"
2

2�2
" (4)

where �2
" is the variance of the noise, and "2 means the local quadratic residual1

between the original image, I0, and the �ltered image I� . As can be seen in
Shannon and Rissanen [8] works, the measure of information is close related to
the probability. We can compute the measure of information in bits of equation
(4) applying logarithm (log2). Thus, the description length of the residual takes
the form of:

dl"� = k

�
"2

2�2
"

�
(5)

where k = 1
ln2 . Once a ldI� and ld"� have been de�nited, we may, therefore, write

the local description length as the sum of both terms, (3) and (5):

dlI0 = n

�
��

�2
x

�
+ k

�
"2

2�2
"

�

Grouping terms, we have:

1In a �rst order neighborhood.
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dlI0 =

�
�

�2
x

�
+ "2 (6)

where � =
2n�2

"
��

k
. It is positive since that n � 2 from equation (3), and the

other proportional variables are also positives. It is convenient to distinguish in
equation (6), that � represents, principally, the assumed noise variance �2

" and
precision used to represent I� . If we empirically �x the precision, we can recognise
the range where � becomes useful.

Note that in the de�nition of equation (6) does not appear an edge stopping
function nor gradient threshold. The minimal and maximal amount of smooth-
ness are controlled by the �min and �max in the scale space. Moreover, applying
equation (6) the �lter adapts its shape (�) in the next way: if the �lter is close
to the discontinuities, the MDL selects a � close to �min; otherwise, if the �lter is
located in a uniform structure, the MDL selects a variance close to �max. Notice
that, the Gaussian shape (�) changes as a function of MDL. The reason this works
is that in the neighborhood of a discontinuity the absolute value of the residual
"2 grows much faster with respect to � than in a relatively uniform region of an
image. As a result, the local scale will be small close to the discontinuities, and
large over the uniform regions, which permits an e�ective noise elimination and
an accurate discontinuity preservation at the same time.

3.3 Final algorithm

Once equation (6) is de�ned, one may use it to compute directly the local amount of
smoothing in terms of variance, and, in consequence, perform a Gaussian �ltering.
To be speci�c, compute the local description length at each pair x; y through2

I0; I�1 ; I�2 ; :::; I�n . Then, based in the MDL principle, we choose the minimal
value of dlI� at each location x; y. This min(dlI�) returns the optimal smoothness
(��) in x; y. This value represents the maximum smoothing, and, at the same time,
the minimum residual (see equation 6). At this step, we have the local variance
(��(x; y)), which is by itself, the appropriate smoothing for regions and not across
discontinuities

Finally, the output smoothed image in location x; y is the intensity I�(x; y) at
the selected scale ��(x; y).

The local variance � of the Gaussian at x; y, allows us the possibility of making
an adaptive Gaussian �lter. Each point x; y is blurring as ��(x; y). That is,

I�(x;y) = I0(x; y) � e

�
�

x
2+y2

2��(x;y)

�

4 Examples of adaptive Gaussian �ltering

As a �rst example, we �ltered the image in �gure (1a). Figure (1b) shows the
local scale map computed with equation (6). A value close to �min is darker.
Figures (1c) and (1d) shows the �nal image after 50 and 80 iterations respectively

2Scales from �min = 0:4 to �max = 4:0, increment 0:1.
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of a standard anisotropic di�usion algorithm3. Both images present noise and
excessive blurring within regions, note that the adaptive version, �gure (1e), does
not blur beyond regions nor across discontinuities.

Figure 1: Example of adaptive Gaussian �ltering. (a) A pine cone image corrupted
with Gaussian noise, � = 40. (b) Local scale map. (c) The output of 50 iterations
of anisotropic di�usion, k = 10. (d) The output of 80 iterations of anisotropic
di�usion with k = 10. (e) The adaptive Gaussian �lter.

Our second example is illustrated in �gure (2), where we can see the response
of the �lter at smooth surfaces and noise. The image of Lenna (2a) has been
corrupted with Gaussian noise, and �gure (2b) shows its local scale map. Figures
(2c) and (2d) are computed with anisotropic di�usion, both images have noise and
unwanted blurring. In fact, �gure (2e) keeps its lips and shoulder, and also shows
less noise. Thus, facial features are more clear.

Our third example shows a human colon image corrupted with Gaussian noise,
see �gure (3a). Figure (3b) shows the local scale map, ��(x; y), used by the
adaptive Gaussian �lter. Next, �gures (3c) and (3d) show clearly that anisotropic
di�usion could not suppress noise properly. Figure (3e) shows an imagen with less
noise and without excessive blurring.

Notice in �gures (1b, 2b, 3b), that a visual discontinuity in the original images
have its respective match in the local scale maps. When we compared the re-
sponses between anisotropic di�usion and the proposed algorithm, we found that
it provides similar or even better results. These results could be interpreted to sup-

3Code available in reference [5]
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Figure 2: Example of adaptive Gaussian �ltering. (a) Lenna corrupted with Gaus-
sian noise, � = 40. (b) Local scale map. (c) The output of 60 iterations of
anisotropic di�usion with k = 10. (d) The output of 80 iterations of anisotropic
di�usion with k = 10. (e) The adaptive Gaussian �lter.

port the idea of smoothing without edge stopping functions based on derivatives.
Moreover, our experiments indicate that the output of the adaptive Gaussian �lter
compares favourably with the standard anisotropic di�usion algorithm, at a low
computational cost, and without supplying variables.

As mentioned earlier, the algorithm is stable, i.e. not too dependent on the
value of �. For instance, � can be within a large range with the same performance.
Presumably, the range where � becomes useful is between 2000 and 4000 (the � is
set to 3000 in all examples). The algorithm took 3 seconds per image on an IBM
H50 workstation.

5 Conclusions and future work

We have presented an adaptive Gaussian �lter that computes directly the local
Gaussian smoothing in terms of variance. That is by itself more intuitive than a
successive application of weighted averagingmasks or partial di�erential equations.
The smoothness is computed in such a way that keeps main discontinuities. In
addition, our technique is not iterative, it is very stable nor requires any thresholds.

Our experiments show that the output of adaptive Gaussian �lter compares
favourably with anisotropic di�usion, at a low computational cost, and without
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Figure 3: Example of adaptive Gaussian �ltering. (a) A human colon image
corrupted with Gaussian noise, � = 30. (b) Local scale map. (c) The output of
100 iterations of anisotropic di�usion with k = 10. (d) The output of 120 iterations
of anisotropic di�usion with k = 10. (e) The adaptive Gaussian �lter.

supplying variables. These �ndings also suggest that the algorithm can contribute
to the perception of di�erent approaches, perhaps based on the MDL principle,
to deal with the local smoothing. Moreover, the MDL approach shows accurate
results and could be a good way to substitute the undesirable gradient threshold
in other low-level techniques.
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