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Abstract

We develop a new formulation for including invariance in a general form of
the Hough transform. We first develop a formal definition of the Hough
transform mapping for arbitrary shapes and general transformations. We then
include an invariant characterization of shapes and we develop and apply our
technique to extract shapes under similarity and affine transformations. Our
characterization does not require the computation of properties for lines or
other primitives that compose a model, but is based solely on the local
geometry given by points on shapes. Experimental results show that the new
technique is capable of extracting arbitrary shapes under occlusion and when
the image contains noise.

1 Introduction

In shape extraction, it is important to be able to handle difference in an object’s
appearance due to change in camera position [1]. Some techniques, including cluster
methods, pose clustering, evidence gathering, geometric hashing and hypothesis
accumulation have handle changes in object’'s appearance by verifying the consistency
between structures in the image and in the target shape [2-6]. Our approach
circumvents this problem by including invariant properties within the evidence
gathering procedure of the Hough transform (HT). Our formulation is focused on
similarity and affine transformations and it avoids problems due to the uncertainty in
the location or lines and other image primitives [7] by considering only edge points in

a shape. We take as our starting point the evidence gathering of Fourier parameterized
shapes [8]. The use of parameterized shapes ameliorates difficulties inherent in use of
tabular curve descriptions (as in the Generalized Hough transform (GHT)).

2 Evidence gathering of arbitrary shapes

Model shape extraction is fundamentally a problem of analysis of regression [9]. Here,
we consider as a fitting curve a parametric model defined by a shape o(g)dehd a
parametric transformation f,. Thus, a parametric model is defined as
w(s,a) = f(a,u(s)), wherea is a vector that contains the transformation parameters
and s defines the points in the model. 1f does not contain any translation term, the
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model shapew(s,a) is relative to the origin. Therefore, a primitive in an image is
represented by a translation of the model. That is,

z(s,a)=w(s,a)+b 1)
where the pointb = (a,,b,) defines the position of the primitive in an image. The
shape extraction problem is solved by determining the parametees amd the
position b such that they define a curweés,a) that best fits the image data. Deviations
due to the use of minimization of quadratic errors combined with the change in the
position of the objects have been discussed in [10,11].

The Hough transform (HT) obtains a robust mode fitting by gathering evidence of
all the potential values of the parameters defined when a point in an image is matched
to a point in the model. For eq. (1), if a point in an imagds matched to a point in
the modelz(so,a), then the location parameter as a functionpfnd ais given by

b(Ao,a) = b(ag, o) 2

for b(Ag,a)= A, - w(sy,a). That is, the location can be determined given a point in the
image and the parameters of the transformation. Each combination of the parameters
defines a potential value for the location. That is, the match of a point in the model and
a point in the image defines a hyper-surface in the parameter space. This hyper-surface
defines the point spread function (psf) of the pajntin the HT, the parameters are
computed by increasing the elements of an accumulator space that forms the trace of
each psf and then searching for a maximum. The elements that are incremented in the
accumulator space are given by the mapping

{(b,a]b =/\0 _W(SOIa)r W(SOIa) =f (aIU(SO))} DUO Ol , |]U(SO) (3)

This equation defines a general HT mapping for arbitrary shapes and
transformations. The remainder of this paper will focus on reducing the computational
requirements in this equation and on providing an analytic formulation for models
represented by curves under similarity and affine transformations.

3 Generalized invariant HT

Invariance provides a general approach for reducing the computational requirements of
the HT. In order to characterize invariance, we define a funcliothat computes a

feature for a point in a curve. The functianis invariant with respect td,. That is,
Q(f (a,u(s)) =Q(u(sy)). If Q is invariant under translation, then according to the
definitions in the previous section, it is possible to establish the relationship
Q(z(sy,2)) = Q(f (a,u(s0))) = Q(u(so)) - Thereby, for a poing, there exists a model point
u(so) such that,
Qo) = Q(u(so)) (4)

In order to gather evidence, we can constrain the elements of the accumulator space
in eq. (3) by considering only the elements for which eq. (4) holds. To constrain eq. (3)
we determine, by eq. (4), the potential points in the curve for a given image point.
These points can be represented as,

W (2o) = fuls; Jlo) -Qluls; ) = o ©)
Thus, instead of considering all the pointsu¢) for each pointA, in | (i.e.,
OX, O1,0u(sy)), evidence can be gathered by considering only the poivigig) for
each pointA, in | (i.e., OA, O1,00(sy)OW(A)). A more significant simplification
can be achieved if we consider that the matching process in eq. (5) is an invariant
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mapping. Thus, we can find the transformation by solving far in
Q(A)=0Q(f (a,u(s))). In general, the solution is multi-valued. That is, for each point
Ao 01, and each poinb(s,)OW(A,) we can determine a different transformation that
maps the model point into the image point. We define the collection of solutions as,
£2(4o,0(s0)) ={alQ(o) = Q(f (,u(s0))} (6)
Thus, the position of the image poikt and the transformation parameters can be
gathered independently. Accordingly, the HT mapping in eq. (3) can be redefined as
fib =2 - 1 (a,0(%))a T T2 (Ao, (s )} TAo T1,Du(s0) W (o) @)
Consequently, if we establish an invariant functiam for a family of
transformations f_, we can characterize equivalent objects, and thereby solve the
extraction problem by searching for the location of a shape in a 2D accumulator space.
The size of this accumulator is independent of the complexity of the object or of the
generality of the transformation. The transformation parameters can be determined by
gathering evidence according to the mapping,
el = 2 (10.0(s0 D120 01, D ()W () (®)
Alternatively, we can exploit the values of the location parameters to solve for some
of the parameters i, reducing the computational burden. This approach will be
considered in further detail in section 6.4.

4 General algorithm

According to egs. (7) and (8) the extraction process defined via the invariant form of

the HT can be implemented in three steps. First, for each point in the image it is

necessary to identify a potential set of points in the model by matching invariant

features according to eq. (5). Secondly, the image transformation that maps the point
in the image and the point in the model is determined by eq. (6). Finally, evidence of
the location position and transformation parameters is gathered by the HT mappings in
egs. (7) and (8). The reminder of this paper will focus on characterizing the function

Q and solving for the analytic expression in (5) and (6) wifenis defined by

similarity and affine transformations.

5 Similarity transformations
5.1 Parametric model

A parametric model for similarity transformations is defined by multiplying the model
shapeu(s) by a scalar value and by a rotation matrix. Thus, the mapping in eq. (2) is

given by a=(,p), wherel and p are the scale and rotation parameters. Here, the

parametric model is represented by an orthogonal decomposition of the form
w(s,a)=w, (s,a)u, +w, (s a), 9

where U, =[10], U, =[01], w,(s,.2)=IR (s,0), w,(s.2)=IR (s,p) and[R (s.p) R,(s.0)|

is the result of multiplying the model vectppr,(s) v, (s)| by a rotation matrix.

5.2 Geometric invariance

For similarity transformations, the functio@ can be obtained by considering the

concept of angle. An angle is defined by three points. Here, the point that is
characterized by the invariant is denotedsaswhile the points used to define the
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angle are denoted by the sub-indieesand s,. An invariant characterization of the
point w(s,,a) is given by
V.V -VV
) ,a), ,a), ,a))= w’ 10

Qo5 2wl )l a) =G (10
for V, =w(s,a)-w(s.a),Vy =w(s,a)-w,(sp,a). Note that although the number of
parameters imQ has been increased with respect to the definition presented in sec. 4,
the function has the same meaning as in eq. (7). That is, it provides a characterization
of a single point in the model (i.e., for(s,,a)).

Although eq. (10) defines a unique invariant for the points in the model, there exist
alternative ways in which the points can be chosen. Here we use the geometry shown in
figure 1. In this case, the third point is defined by the intersection of the tangents to
two points in the curve. The advantage of this definition is that it characterizes a point
by only one other point in the image and this point does not require to have a particular
geometric relationship to the other two. The definition of the third point is based on the
pole-polar form of the shape and it has been previously used for the extraction of
circles and ellipses [12]. In [13,14] this relationship is exploited to define indexed
tables suited to invariant extraction of shapes by the GHT. These tables store the
position of the center of a shape as a function of the invariant properties in the pole-
polar form.

wis,.a)

Fig. 1. Arrangements of points defined by a pole-polar relationship.

5.3 Local matching

According to eq. (5), we need to solve for the point that satisfies the relationship
Qsim(A0.M1) = Qaim(U(so),(s1)) . The form of each invariance in this relationship can be
obtained by simplifying eq. (10) by using the pole-polar relationships. Thus, invariant
features for the points in the model and for the points in the image can be expressed as
a function of the position of the points and their gradient direction. The invariance
defined in eq. (10) defines two features in the arrangement shown in Fig. 1(b): (1) as a

measure of the angle , between the line joining, and s, and the tangent a; and
(2) as a measure of the angbe defined by the intersection of the lines. For the first
case we have
G(Ao) - v(s0.,51)
'sim /\ yA e e e S
QoA =1 Gl W )

_ Gu(s))-¢(s0.51)
CQubls)o(s)=Sam el

for y(sO'sl): (/\\/1 _/\yl)/(/\xl _/\Xo) and (p(solsl): (Uy(sl)_Uy(so))/(ux(sl)_ux(so))' For the
second case, as a measure of the agglie invariant arrangement of points is given
by
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: - G6o)-6) _ Gu(s0))-Glu(s1))
Qsim(Ao 1)—m: QuimU(s0)0(s1)) = 1+6(0(s )60, ) (12)
From eq. (5) we observe that the problem of obtaining a definitiow(af) can be
formulated as the problem of obtaining the poin{s,) such that the invariant
features Qgm(Ao, A1) and Qinm(Ao,A;) computed from an image are equal to the
invariant featurexQgm (s, ) u(s:)) and QLim(v(so).u(s;)) in the model. That is, for two

points in an image, we have a pair of equations that define a pair of points in the model
with the same invariant characterization. More formally,

WA, A) :{U(%):U(SJQHT()O A) =QinfU) ) Qinfdo M) = Qinfu(s) U} (13)

The pair of simultaneous equations can be written as,
Qsim(A0,41) = (Gu(so)) ~ lso. 51))/ L+ G800, 1))
Qsim(A0,41) = (G(u(%0)) - Gu(:)))/ 1+ Glu(s0))G (v(s1))

The solution of these pair of equations defines the points in eq. (5).

5.4 Parameters of the transformation

A shape’s rotation and scale can be obtained by matching two points of the curve to
two points in the model. That is, for each pair of poiagsr, 01, and each pair of
points u(s,) and u(s;) such thatQun(o. )= Qum(U(s;)u(s)) and Qum(e.Ar)=
Qiim(u(s; )u(s1)), we can define a function of the form of eq. (6) as,

£2 (0, A1,0(%).0(51)) ={l, PIQuim(A0 A1) = Quim(F (1, P)0(0)). £ (L P).0(s )} (15)

By using the geometric properties of a pair of points, it is possible to obtain an
explicit form of eq. (15) as,

an™ - (So) - |A1‘Ao|
Pt EA*A E” (so>% ey
6 Affine transformations

6.1 Parametric model

A parametric model for an affine transformation can be obtained by multiplying a
model shapeu(s) by a linear transformation. Thus, the parametric model
b(Ay,a)= A, —w(sy,a) can be defined by the transformation parametergA,B,C,D)

for the orthogonal components of the parametric model in eq. (9) defined as,
Wy (sa)= Au,(s)+Buy(s) wy(sa)=Cux(s)+Du,(s). a7

(14)

6.2 Geometric invariance

The family of shapes defined by affine transformations is a linear combination of point
coordinates. Thus, geometric relationships based on properties computed on a pair of
parallel straight lines, such as slope and distance ratio, remain invariant. The distance
ratio between two parallel lines can be defined by four points, thus an invariant
characterization of a point/v(so,a) in the parametric model can be obtained by
considering three additional points. If the two poinifs,,a) and w(s,a) define a
parallel line to the line formed by the pointds,,a) and w(s,,a), then the distance

ratio invariant for a pointv(s,,a) can be defined as,

Qu (s @) s, s, (s, ) = e lnd) Wit 8 (g



majid



BMVC2000

Fig. 2. Arrangement of points to define two parallel lines.

Fig. 2 shows a geometric arrangement that defines invariant features in a manner
analogous to Fig. 1. In this case, only three points are on the shape, whilst the fourth
one is determined indirectly by using gradient direction information. In this case, the
point w(s,,a) is defined by the intersection of the tangent lines to the poifgsa)

and w(s,,a).

6.3 Local matching

According to eq. (5), the collection of pointg(A,) is given by finding the points
u(s,) that satisfy the relationshim.i (Ao,A2,43)= Qur (U(so)0(s;)0(s3)). If we
consider the geometry in figure 2, thus this relationship can be written as

Qo he) =350 Qulofe)ols)o(e) = 22 =000) g
where
A = )‘yo _)‘y3 +G()\3))\><3 +G()\0))\x0
G010 T -G, (20)
e G(A3)+G(7\o)

and whereu(s,) is defined in a similar fashion. By considering the second part of eq.

(18), we obtain the invariance definition

Ay, =2 vy(s1)-vy(x)
Q’a A 1/\ y/\ :M’ Q;l U\S ),U\S; ),U S :%' 21
ff( 0712 3) /\y3 _/\yz ff( ( ) ( 2) ( )) Uy(Ss)—Uy(Sz) ( )
Thus, W (A,) is given by all the points in the model such that the invariant features

Quit (A0,A2,43) and Qi (Ag,A4,,A3) computed from an image are equal to the invariant
featuresQqq (U(so),u(s2),u(ss)) and Quy (L(s0),u(s;),u(ss)) on the model shape. That is,

Wer(AoAzAs) :{U(Q)):U(Sz)yu(sen(lﬁ(xo Aads) =
Qur(U(2) u(2)0()) QMo Ao As) =Qir(Ulz) U(s:) ()}

This equation and the geometry of the distance ratio define a system of three
simultaneous equations. That is,
(Qaff (/\Ov/\zy/\3))(ux (53)_Ux (52))_Ux (sl)+Ux (50) =0,
(Qut (o.22,25)oy (83) -0y (52)) -0y (81) +uy (30) = 0, (23)
G(u(s0 v (s3) -y (s2)) -y (s5) +uy (s2) = 0.
The third equation ensures that the arrangement of points forms two parallel lines.
That is, that the gradient direction at the poigtequals to the slope of the line which
joins the pointsA, and A;.

(22)
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6.4 Parameters of the transformation

The matching of three points in the curve to three points in the model is sufficient to
obtain the parameters, B,C,D of the transformation. The solution of the parameters
of the transformation is defined by the function in eq. (6), and can be developed in a
manner analogous to eq. (15). In this case, the parameters are obtained by a system of
four equations that define a gathering process in a 4D parameter space. However, the
parameter space can be reduced by using the information of the shape's position. After
the location parameters have been obtained, we can define two independent systems of
two equations. As such, the gathering process can be performed in two 2D
accumulators by solving for,
A ><0 —Q = Av ( )+BU (SO) Yo _bO =CU><(50)+DUy(50)
o A0l )ol ) 37 o = us(s:)+ Buy(s:) Ay, ~by =Cu,(6)+ Doy s2) @

7 Implementation and examples

To locate a model shape under a similarity transformation, we substitute the definitions
in egs. (13) and (15) into egs. (7) and (8). Thus, evidence is gathered by using a pair of
independent 2D accumulator spaces. The evidence gathering implementation is divided
into four steps: (1) for each pointin the image chose another point and compute
Qsim(%0,A1) and Q4im(A0.A,) according to egs. (11) and (12); (2) use these values in eq.
(14) to find all the points)(s,) and u(s,) that satisfy eq. (13); (3) use the points,

M, u(sg) and u(s,) in eqg. (16) to find the parameters of the transformation and
increment the associated element in the accumulator space; (4) compute the location
parameter according to eq. (7). In this implementation, it is important to ensure that
both points belong to the same primitive. Thus, the paints only selected if it is

within a specified distance of,. In our implementation), must be closer than one
quarter of the image length. We develop the cus(® as an orthogonal Fourier
expansion [8]. In this representation, derivatives are easily computed. The system in
eg. (14) is solved by using aceessive approximation method.

Fig. 3 shows an example of the accumulation process for similarity transformations.
This figure contains a synthetic shape with random noise. In this example, 65% of the
data corresponds to noise. Fig. 3(b) shows the result of the extraction process
superimposed on the original image. Fig. 3(c) and 3(d) show that the location and
parameters accumulators contain well-defined peaks.

() (b) (@
Fig. 3. (a) Example of an image with 65% of noise. (b) Result of the extraction
process. (c) Location accumulator. (d) Scale and rotation accumulator.
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Fig. 4 shows an example of the accumulation process on a real image. The model
shape in Fig. 4(a) was obtained from a binary image ok12® pixels. The result of
the extraction process is presented in Fig. 4(d) superimposed as a thick border. Fig.
4(e) and 4(f) show the final accumulator for the position and for the rotation and scale
parameters.

) (e @
Fig. 4. Shape extraction. (a) Model shape. (b) Raw image. (c) Image edges.
(d). Result. (e) Location accumulator. (f) Scale and rotation accumulator.

In order to develop an evidence gathering process for affine transformations, we
substitute the definitions in egs. (22) and (24) into egs. (7) and (8). The evidence
gathering process is divided into 5 steps: (1) for each pgirh the image choose a

pair of pointsA, and A; such that the line which passes through the points has the
same slope than the gradient direction at the phjntFrom these, compute the value
of Qur (A0,A2,A3) and Qi (A0, A2,A5) according to egs. (19) and (21); (2) use these
values in the system of equations in (23) to find all the paifgg, u(s,) andu(s;);
(3) use the poaints\,, A,, As, ulsy), u(s,) and u(s;) to solve for the parameters
A B,C,D; (4) compute the location parameter according to eq. (6) and increment the
associated element in the corresponding position in the accumulator space; (5) after all
evidence has been gathered and the location parameter is known, repeat step (1) and
use the points in the system of equations in (24) to gather evidence for the parameters
of the transformation.

In this implementation, the solution for eq. (23) imposes significant computational
load. We reduce the complexity by considering that the paintan only be chosen
from a selected collection of landmark points. Landmark points are identified by their
high curvature. Thus, for each poing we consider a poinf, in the image with a
high curvature. In order to select the point from the image, we search for it on the
trace of the straight line which passes through the poindnd whose slope is equal
the slope of the poini, .
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Fig. 5. (a) Model shape. (b) Synthetic image where 35% of the data belongs to the
primitive. (c) Result of the extraction process. (d) Location accumulator. (e) Result for
the parametera andC. (f) Result for the parameteBsandD.

Fig. 5 shows an example of the evidence gathered for affine transformations. Fig.
5(a) shows the model shape. Points of high curvature are defined as the zeroes of the
derivative of the tangent angle of the Fourier expansion and they are marked with
small circles. To quantify which percentage of pointseisessary to obtain evidence to
locate the shape, we generated a collection of synthetic images containing random
noise. The number of points that form the model shape was reduced in proportion to
the amount of noise points added to the image. In our experiments we maintained 3
points of high curvature in correct positions (those which lie on the shape), whilst the
other five were positioned at random. In the example in Fig. 5, the model shape is
composed of 35% of the points (i.e., 65% outliers). Fig. 5(c) shows the result obtained
by the gathering process. The accumulator presented corresponds to the parameters of
the transformation. An example of the extraction process applied to a real image is
presented in Fig. 6.

@ (e
Fig. 6. Shape extraction. (a) Raw image. (b) Image edges and high curvature points.
(c) Result. (d) Location accumulator. (e) Accumulator for the paramiiznsiC.
(f) Accumulator for the parameteBsandD.

&)
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8 Conclusions

We have developed a technique for including invariance in a general form of the HT
for parametric models defined by similarity and affine transformations. The advantage
of this characterization is that it significantly reduces the uncertainty associated with
the use of higher level primitives such as lines or curves. Based on invariance
characterization it is possible to locate of a shape using a 2D accumulator space.
However, the complexity of determining corresponding arrangements of points in the
model and in the shape is directly related to the generality of the transformation. We
have included an effective strategy that reduces the number of correspondences
between the model and the image. This is indispensable since the generality of the
transformation increases the geometric complexity of the features identified in the
shape. We have shown that the technique can obtain adequate results when some
features are generated by background objects or are missed.
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