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Abstract

We develop a new formulation for including invariance in a general form of
the Hough transform. We first develop a formal definition of the Hough
transform mapping for arbitrary shapes and general transformations. We then
include an invariant characterization of shapes and we develop and apply our
technique to extract shapes under similarity and affine transformations. Our
characterization does not require the computation of properties for lines or
other primitives that compose a model, but is based solely on the local
geometry given by points on shapes. Experimental results show that the new
technique is capable of extracting arbitrary shapes under occlusion and when
the image contains noise.

1 Introduction
In shape extraction, it is important to be able to handle difference in an object’s
appearance due to change in camera position [1]. Some techniques, including cluster
methods, pose clustering, evidence gathering, geometric hashing and hypothesis
accumulation have handle changes in object’s appearance by verifying the consistency
between structures in the image and in the target shape [2-6]. Our approach
circumvents this problem by including invariant properties within the evidence
gathering procedure of the Hough transform (HT). Our formulation is focused on
similarity and affine transformations and it avoids problems due to the uncertainty in
the location or lines and other image primitives [7] by considering only edge points in
a shape. We take as our starting point the evidence gathering of Fourier parameterized
shapes [8]. The use of parameterized shapes ameliorates difficulties inherent in use of
tabular curve descriptions (as in the Generalized Hough transform (GHT)).

2 Evidence gathering of arbitrary shapes
Model shape extraction is fundamentally a problem of analysis of regression [9]. Here,
we consider as a fitting curve a parametric model defined by a shape model ( )sυ  and a
parametric transformation af . Thus, a parametric model is defined as

( ) ( )( )sfs υ,, aaw = , where a  is a vector that contains the transformation parameters
and s  defines the points in the model. If af  does not contain any translation term, the
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model shape ( )aw ,s  is relative to the origin. Therefore, a primitive in an image is
represented by a translation of the model. That is,

( ) ( ) bawaz += ,, ss (1)
where the point ( )00,ba=b  defines the position of the primitive in an image. The
shape extraction problem is solved by determining the parameters in a  and the
position b  such that they define a curve ( )az ,s  that best fits the image data. Deviations
due to the use of minimization of quadratic errors combined with the change in the
position of the objects have been discussed in [10,11].

The Hough transform (HT) obtains a robust mode fitting by gathering evidence of
all the potential values of the parameters defined when a point in an image is matched
to a point in the model. For eq. (1), if a point in an image 0λ  is matched to a point in
the model ( )az ,0s , then the location parameter as a function of 0λ  and a is given by

( ) ( )000 ,, babab =λ  (2)
for ( ) ( )aswab ,, 000 −= λλ . That is, the location can be determined given a point in the
image and the parameters of the transformation. Each combination of the parameters
defines a potential value for the location. That is, the match of a point in the model and
a point in the image defines a hyper-surface in the parameter space. This hyper-surface
defines the point spread function (psf) of the point0λ . In the HT, the parameters are
computed by increasing the elements of an accumulator space that forms the trace of
each psf and then searching for a maximum. The elements that are incremented in the
accumulator space are given by the mapping

( ) ( ) ( ) ( )( ){ } ( )000000 ,,,,,, sIsafaswaswbab υυυλ ∀∈∀=−= (3)

This equation defines a general HT mapping for arbitrary shapes and
transformations. The remainder of this paper will focus on reducing the computational
requirements in this equation and on providing an analytic formulation for models
represented by curves under similarity and affine transformations.

3 Generalized invariant HT
Invariance provides a general approach for reducing the computational requirements of
the HT. In order to characterize invariance, we define a function Q  that computes a
feature for a point in a curve. The function Q  is invariant with respect to af . That is,

( )( )( ) ( )( )00, sQsafQ υυ = . If Q  is invariant under translation, then according to the

definitions in the previous section, it is possible to establish the relationship
( )( ) ( )( )( ) ( )( )000 ,, sQsafQaszQ υυ == . Thereby, for a point 0λ  there exists a model point

( )0sυ  such that,
( ) ( )( ).00 sQQ υλ = (4)

In order to gather evidence, we can constrain the elements of the accumulator space
in eq. (3) by considering only the elements for which eq. (4) holds. To constrain eq. (3)
we determine, by eq. (4), the potential points in the curve for a given image point.
These points can be represented as,

( ) ( ) ( ) ( )( ){ }000 =−= jj sQQsW υλυλ (5)

Thus, instead of considering all the points of ( )sυ  for each point 0λ  in I  (i.e.,
( )00 , sI υλ ∀∈∀ ), evidence can be gathered by considering only the points in ( )0λW  for

each point 0λ  in I  (i.e., ( ) ( )000 , λυλ WsI ∈∀∈∀ ). A more significant simplification
can be achieved if we consider that the matching process in eq. (5) is an invariant
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mapping. Thus, we can find the transformation by solving for a  in
( ) ( )( )( )00 , safQQ υλ = . In general, the solution is multi-valued. That is, for each point

I∈0λ , and each point ( ) ( )00 λυ Ws ∈  we can determine a different transformation that
maps the model point into the image point. We define the collection of solutions as,

( )( ) ( ) ( )( )( ){ }0000 ,, safQQasf υλυλ ==∆ (6)

 Thus, the position of the image point 0λ  and the transformation parameters can be
gathered independently. Accordingly, the HT mapping in eq. (3) can be redefined as

( )( ) ( )( ){ } ( ) ( )0000000 ,,,, λυλυλυλ WsIsfasafbb ∈∀∈∀∈−= ∆ (7)

Consequently, if we establish an invariant function Q  for a family of
transformations af , we can characterize equivalent objects, and thereby solve the

extraction problem by searching for the location of a shape in a 2D accumulator space.
The size of this accumulator is independent of the complexity of the object or of the
generality of the transformation. The transformation parameters can be determined by
gathering evidence according to the mapping,

( )( ){ } ( ) ( )00000 ,, λυλυλ WsIsfaa ∈∀∈∀= ∆ (8)

Alternatively, we can exploit the values of the location parameters to solve for some
of the parameters in a , reducing the computational burden. This approach will be
considered in further detail in section 6.4.

4 General algorithm
According to eqs. (7) and (8) the extraction process defined via the invariant form of
the HT can be implemented in three steps. First, for each point in the image it is
necessary to identify a potential set of points in the model by matching invariant
features according to eq. (5). Secondly, the image transformation that maps the point
in the image and the point in the model is determined by eq. (6). Finally, evidence of
the location position and transformation parameters is gathered by the HT mappings in
eqs. (7) and (8). The reminder of this paper will focus on characterizing the function
Q  and solving for the analytic expression in (5) and (6) when af  is defined by

similarity and affine transformations.

5 Similarity transformations
5.1   Parametric model
A parametric model for similarity transformations is defined by multiplying the model
shape ( )sυ  by a scalar value and by a rotation matrix. Thus, the mapping in eq. (2) is
given by ( )ρ,l=a , where l  and ρ  are the scale and rotation parameters. Here, the
parametric model is represented by an orthogonal decomposition of the form

( ) ( ) ( ) yx swsws UU= yx aaaw ,,, + (9)

where [ ]0,1=xU , [ ]1,0=yU , ( ) ( )ρ,, slRsw xx
=a , ( ) ( )ρ,, slRsw yy =a  and ( )[ ρ,sRx  ( )]ρ,sRy

is the result of multiplying the model vector ( ) ( )[ ]ss yx υυ  by a rotation matrix.

5.2   Geometric invariance
For similarity transformations, the function Q  can be obtained by considering the
concept of angle. An angle is defined by three points. Here, the point that is
characterized by the invariant is denoted as 0s , while the points used to define the
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angle are denoted by the sub-indices 1s  and 2s . An invariant characterization of the

point ( )aw ,0s  is given by

( ) ( ) ( )( ) ,,,,,,
2112

2112

210

yyxx

yxyx

sim VVVV

VVVV
swswswQ

+
−

=aaa (10)

for  ( ) ( ) ( ) ( ).aaaa ,sw,swV,,sw,swV 0yiyy0xixx ii
−=−=  Note that although the number of

parameters in Q  has been increased with respect to the definition presented in sec. 4,
the function has the same meaning as in eq. (7). That is, it provides a characterization
of a single point in the model (i.e., for ( )aw ,0s ).

Although eq. (10) defines a unique invariant for the points in the model, there exist
alternative ways in which the points can be chosen. Here we use the geometry shown in
figure 1. In this case, the third point is defined by the intersection of the tangents to
two points in the curve. The advantage of this definition is that it characterizes a point
by only one other point in the image and this point does not require to have a particular
geometric relationship to the other two. The definition of the third point is based on the
pole-polar form of the shape and it has been previously used for the extraction of
circles and ellipses [12]. In [13,14] this relationship is exploited to define indexed
tables suited to invariant extraction of shapes by the GHT. These tables store the
position of the center of a shape as a function of the invariant properties in the pole-
polar form.

Fig. 1.  Arrangements of points defined by a pole-polar relationship.

5.3   Local matching
According to eq. (5), we need to solve for the point that satisfies the relationship

( ) =10 ,λλsimQ ( ) ( )( )10 , ssQsim υυ . The form of each invariance in this relationship can be
obtained by simplifying eq. (10) by using the pole-polar relationships. Thus, invariant
features for the points in the model and for the points in the image can be expressed as
a function of the position of the points and their gradient direction. The invariance
defined in eq. (10) defines two features in the arrangement shown in Fig. 1(b): (1) as a
measure of the angle α , between the line joining 0s  and 1s , and the tangent at 1s ; and

(2) as a measure of the angle β  defined by the intersection of the lines. For the first
case we have

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )100

100
10sim

100

100
10sim

s,ssG1

s,ssG
ssQ,

s,sG1

s,sG
,Q

ϕυ
ϕυυυ

γλ
γλλλ

+
−=

+
−= ,

(11)

for ( ) ( ) ( )
011110 , xxyyss λλλλγ −−=  and ( )=

10 ,ssφ  ( ) ( )( ) ( ) ( )( )0101 ssss xxyy υυυυ −− . For the

second case, as a measure of the angle β  the invariant arrangement of points is given
by
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( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )10

10
10sim

10

10
10sim

sGsG1

sGsG
ssQ,

GG1

GG
,Q

υυ
υυυυ

λλ
λλλλ

+
−=′

+
−=′ ,, (12)

From eq. (5) we observe that the problem of obtaining a definition of ( )0λW  can be
formulated as the problem of obtaining the points ( )0sυ  such that the invariant

features ( )10,λλsimQ  and ( )10 ,λλsimQ′  computed from an image are equal to the
invariant features ( ) ( )( )10 , ssQsim υυ  and ( ) ( )( )10 , ssQsim υυ′  in the model. That is, for two
points in an image, we have a pair of equations that define a pair of points in the model
with the same invariant characterization. More formally,

( ) ( ) ( ){ ( ) ( ) ( )( ) ( ) ( ) ( )( )}10sim10sim10sim10sim1010sim s,sQ,Q,s,sQ,Qs,s,W υυλλυυλλυυλλ ′=′==  (13)

The pair of simultaneous equations can be written as,
( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )101010

10010010

1,

,1,,

sGsGsGsGQ

sssGsssGQ

sim

sim

υυυυλλ
φυφυλλ

+−=′
+−=

(14)

The solution of these pair of equations defines the points in eq. (5).

5.4   Parameters of the transformation
A shape’s rotation and scale can be obtained by matching two points of the curve to
two points in the model. That is, for each pair of points I∈10 ,λλ , and each pair of
points ( )0sυ  and ( )1sυ  such that ( ) =10 ,λλsimQ  ( ) ( )( )1, ssQ jsim υυ  and ( ) =′ 10 ,λλsimQ

( ) ( )( )1, ssQ jsim υυ′ , we can define a function of the form of eq. (6) as,

( ) ( )( ) { ( ) ( ) ( )( ) ( ) ( )( )( )}10sim10sim1010 s,l,f,s,l,fQ,Ql,s,s,f υρυρλλρυυλλ ==∆ , (15)

By using the geometric properties of a pair of points, it is possible to obtain an
explicit form of eq. (15) as,

( ) ( )
( ) ( ) ( ) ( )01

01

0x1x

0y1y1

xx

yy1

ss
l

ss

ss
tantan

01

01

υυ
λλ

υυ
υυ

λλ
λλ

ρ
−
−

=





−
−

−





−
−

= −− , (16)

6 Affine transformations
6.1   Parametric model
A parametric model for an affine transformation can be obtained by multiplying a
model shape ( )sυ  by a linear transformation. Thus, the parametric model

( ) =ab ,0λ ( )aw ,00 s−λ  can be defined by the transformation parameters ( )DC,B,A,=a

for the orthogonal components of the parametric model in eq. (9) defined as,
( ) ( ) ( ) ( ) ( ) ( )sDsCs,wsBsAs,w yxyyxx υυυυ +=+= aa . (17)

6.2   Geometric invariance
The family of shapes defined by affine transformations is a linear combination of point
coordinates. Thus, geometric relationships based on properties computed on a pair of
parallel straight lines, such as slope and distance ratio, remain invariant. The distance
ratio between two parallel lines can be defined by four points, thus an invariant
characterization of a point ( )aw ,0s  in the parametric model can be obtained by

considering three additional points. If the two points ( )aw ,0s  and ( )aw ,1s  define a

parallel line to the line formed by the points ( )aw ,2s  and ( )aw ,3s , then the distance

ratio invariant for a point ( )aw ,0s  can be defined as,

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )aa

aa

aa
aa

awawawaw
,sw,sw

,sw,sw

,sw,sw

,sw,sw
,s,,s,,s,,sQ

2y3y

0y1y

2x3x

0x1x
3210aff −

−
=

−
−= (18)
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Fig. 2.  Arrangement of points to define two parallel lines.

Fig. 2 shows a geometric arrangement that defines invariant features in a manner
analogous to Fig. 1. In this case, only three points are on the shape, whilst the fourth
one is determined indirectly by using gradient direction information. In this case, the
point ( )aw ,1s  is defined by the intersection of the tangent lines to the points ( )aw ,0s

and ( )aw ,3s .

6.3   Local matching
According to eq. (5), the collection of points ( )0λW  is given by finding the points

( )0sυ  that satisfy the relationship ( ) =320 ,, λλλaffQ  ( ) ( ) ( )( )320 ,, sssQaff υυυ . If we

consider the geometry in figure 2, thus this relationship can be written as

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )2x3x

0x1x
320aff

xx

xx
320aff

ss

ss
s,s,sQ,,,Q

23

01

υ−υ
υ−υ=υυυ

λ−λ
λ−λ

=λλλ (19)

where
( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )03

y0y3xx03
y

03

x0x3yy
x

GG

GGGG
GG

GG

3003

1

0330

1

λ+λ
λλ−λλ+λ−λλλ

=λ

λ+λ
λλ+λλ+λ−λ

=λ ,
(20)

and where ( )1sυ  is defined in a similar fashion. By considering the second part of eq.
(18), we obtain the invariance definition

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )2y3y

0y1y
320aff

yy

yy
320aff

ss

ss
s,s,sQ,,,Q

23

01

υυ
υυ

υυυ
λλ
λλ

λλλ
−
−

=′
−
−

=′ . (21)

Thus, ( )0λW  is given by all the points in the model such that the invariant features
( )320 ,, λλλaffQ  and ( )320 ,, λλλaffQ′  computed from an image are equal to the invariant

features ( ) ( ) ( )( )320 ,, sssQaff υυυ  and ( ) ( ) ( )( )320 ,, sssQaff υυυ′  on the model shape. That is,

( ) ( ) ( ) ( ){ ( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )}320aff320aff320aff

320aff320320aff

s,s,sQ,,Q,s,s,sQ

,,Qs,s,s,,W

υυυ′=λλλ′υυυ
=λλλυυυ=λλλ

(22)

This equation and the geometry of the distance ratio define a system of three
simultaneous equations. That is,

( )( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) .0

,0,,

,0,,

23230

0123320

0123320

=+−−
=+−−
=+−−

sssssG

ssssQ

ssssQ

yyxx

yyyyaff

xxxxaff

υυυυυ
υυυυλλλ
υυυυλλλ

(23)

The third equation ensures that the arrangement of points forms two parallel lines.
That is, that the gradient direction at the point 0λ  equals to the slope of the line which
joins the points 2λ  and 3λ .
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6.4   Parameters of the transformation
The matching of three points in the curve to three points in the model is sufficient to
obtain the parameters DCBA ,,,  of the transformation. The solution of the parameters
of the transformation is defined by the function in eq. (6), and can be developed in a
manner analogous to eq. (15). In this case, the parameters are obtained by a system of
four equations that define a gathering process in a 4D parameter space. However, the
parameter space can be reduced by using the information of the shape's position. After
the location parameters have been obtained, we can define two independent systems of
two equations. As such, the gathering process can be performed in two 2D
accumulators by solving for,

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2y2x0y2y2x0x

0y0x0y0y0x0x
2020 sDsCbsBsAa

sDsCbsBsAa
s,s,,f

22

00

υυλυυλ
υυλυυλ

υυλλ
+=−+=−
+=−+=−∆ : (24)

7  Implementation and examples
To locate a model shape under a similarity transformation, we substitute the definitions
in eqs. (13) and (15) into eqs. (7) and (8). Thus, evidence is gathered by using a pair of
independent 2D accumulator spaces. The evidence gathering implementation is divided
into four steps: (1) for each point 0λ in the image  chose another point 1λ  and compute

( )10 ,λλsimQ  and ( )10 ,λλsimQ′  according to eqs. (11) and (12); (2) use these values in eq.
(14) to find all the points ( )0sυ  and ( )1sυ  that satisfy eq. (13); (3) use the points 0λ ,

1λ , ( )0sυ  and ( )1sυ  in eq. (16) to find the parameters of the transformation and
increment the associated element in the accumulator space;  (4) compute the location
parameter according to eq. (7). In this implementation, it is important to ensure that
both points belong to the same primitive. Thus, the point 1λ  is only selected if it is
within a specified distance of 0λ . In our implementation, 1λ  must be closer than one
quarter of the image length. We develop the curve ( )sυ  as an orthogonal Fourier
expansion [8]. In this representation, derivatives are easily computed. The system in
eq. (14) is solved by using a successive approximation method.

Fig. 3 shows an example of the accumulation process for similarity transformations.
This figure contains a synthetic shape with random noise. In this example, 65% of the
data corresponds to noise. Fig. 3(b) shows the result of the extraction process
superimposed on the original image. Fig. 3(c) and 3(d) show that the location and
parameters accumulators contain well-defined peaks.

Fig. 3.  (a) Example of an image with 65% of noise. (b) Result of the extraction
process. (c) Location accumulator. (d) Scale and rotation accumulator.
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Fig. 4 shows an example of the accumulation process on a real image. The model
shape in Fig. 4(a) was obtained from a binary image of 128×128 pixels. The result of
the extraction process is presented in Fig. 4(d) superimposed as a thick border. Fig.
4(e) and 4(f) show the final accumulator for the position and for the rotation and scale
parameters.

Fig. 4.  Shape extraction. (a) Model shape. (b) Raw image. (c) Image edges.
(d). Result. (e) Location accumulator. (f) Scale and rotation accumulator.

In order to develop an evidence gathering process for affine transformations, we
substitute the definitions in eqs. (22) and (24) into eqs. (7) and (8). The evidence
gathering process is divided into 5 steps: (1) for each point 0λ  in the image choose a
pair of points 2λ  and 3λ  such that the line which passes through the points has the
same slope than the gradient direction at the point 0λ . From these, compute the value
of ( )320 ,, λλλaffQ  and ( )320 ,, λλλaffQ′  according to eqs. (19) and (21); (2) use these

values in the system of equations in (23) to find all the points ( )0sυ , ( )2sυ  and ( )3sυ ;
(3) use the points 0λ , 2λ , 3λ , ( )0sυ , ( )2sυ  and ( )3sυ  to solve for the parameters

DCBA ,,, ; (4) compute the location parameter according to eq. (6) and increment the
associated element in the corresponding position in the accumulator space; (5) after all
evidence has been gathered and the location parameter is known, repeat step (1) and
use the points in the system of equations in (24) to gather evidence for the parameters
of the transformation.

In this implementation, the solution for eq. (23) imposes significant computational
load. We reduce the complexity by considering that the point 2λ  can only be chosen
from a selected collection of landmark points. Landmark points are identified by their
high curvature. Thus, for each point 0λ  we consider a point 2λ  in the image with a
high curvature. In order to select the point 3λ  from the image, we search for it on the
trace of the straight line which passes through the point 2λ  and whose slope is equal
the slope of the point 0λ .
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Fig. 5.  (a) Model shape. (b) Synthetic image where 35% of the data belongs to the
primitive. (c) Result of the extraction process. (d) Location accumulator. (e) Result for

the parameters A and C. (f) Result for the parameters B and D.

Fig. 5 shows an example of the evidence gathered for affine transformations. Fig.
5(a) shows the model shape. Points of high curvature are defined as the zeroes of the
derivative of the tangent angle of the Fourier expansion and they are marked with
small circles. To quantify which percentage of points is necessary to obtain evidence to
locate the shape, we generated a collection of synthetic images containing random
noise. The number of points that form the model shape was reduced in proportion to
the amount of noise points added to the image. In our experiments we maintained 3
points of high curvature in correct positions (those which lie on the shape), whilst the
other five were positioned at random. In the example in Fig. 5, the model shape is
composed of 35% of the points (i.e., 65% outliers). Fig. 5(c) shows the result obtained
by the gathering process. The accumulator presented corresponds to the parameters of
the transformation. An example of the extraction process applied to a real image is
presented in Fig. 6.

Fig. 6.  Shape extraction. (a) Raw image. (b) Image edges and high curvature points.
(c) Result. (d) Location accumulator. (e) Accumulator for the parameters A and C.

(f) Accumulator for the parameters B and D.
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8 Conclusions
We have developed a technique for including invariance in a general form of the HT
for parametric models defined by similarity and affine transformations. The advantage
of this characterization is that it significantly reduces the uncertainty associated with
the use of higher level primitives such as lines or curves. Based on invariance
characterization it is possible to locate of a shape using a 2D accumulator space.
However, the complexity of determining corresponding arrangements of points in the
model and in the shape is directly related to the generality of the transformation. We
have included an effective strategy that reduces the number of correspondences
between the model and the image. This is indispensable since the generality of the
transformation increases the geometric complexity of the features identified in the
shape. We have shown that the technique can obtain adequate results when some
features are generated by background objects or are missed.
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