BMVC2000

Interactive Visual Dialog

Tal Arbel and Frank P. Ferrie
Department of Electrical and Computer Engineering
McGill University, Center for Intelligent Machines
Montréal, Quebec CANADA H3A 2A7
{taly,ferrie }@cim.mcgill.ca

Abstract

In this paper we propose a paradigm called the Interactive Visual Dialog
(IVD) as a means of facilitating a system’s ability to recognize objects p-
resented to it by a human. The presentation centers around a supermarket
checkout scenario in which an operator presents an item to be tallied to a sta-
tionary television camera. An active vision approach is used to provide feed-
back to the operator in the form of an image (or images) depicting what the
system thinks the operator is most likely holding, shown in a viewpoint that
suggests how the object should next be presented to improve the certainty of
interpretation. Interaction proceeds iteratively until the system converges on
the correct interpretation. We show how the IVD can be implemented using
an entropy-based gaze planning strategy and a sequential Bayes recognition
system using optical flow as input. Experimental results show that the system
does, in practice, improve recognition accuracy, leading to convergence to a
correct solution in a minimal number of iterations.

1 Introduction

In this paper, we explore how a visual dialog between a person and a machine can be used
to facilitate interpretive tasks such as recognizing objects. The presentation will center
around a supermarket checkout scenario in which an operator sweeps an object to be
identified in front of a stationary television camera. Instead of a bar code, the system must
recognize the object from the sequence of images generated as a result of its motion in
front of the camera. This task is difficult because imaging conditions cannot be precisely
controlled (e.g. object pose, distance to camera, illumination, etc.) so that it is likely that
the system will fail to correctly identify the object in a significant number of instances.

In previous work, [1] we showed how an active vision approach could be used to solve a
similar recognition problem in the context of a mobile robot in a stationary environment.
There, ambiguity of recognition in the form of entropy measures was used to calculate
gaze trajectories that minimized the uncertainty of interpretation. The present problem is
more difficult for two reasons i) motion is induced by a human instead of a robot and ii)
the requested motions must somehow be communicated to the human.

Since the variability of human motions cannot be controlled, they must be treated
as noise and accounted for by the recognition process. Rather than attempting to base
recognition on a single measurement, a hypothesis filtering strategy is applied to the entire
sequence so that evidence for different object hypotheses can be accumulated over time

BMV C 2000 doi:10.5244/C.14.76


majid



BMVC2000

until a clear assertion can be made. The strategy is implemented using a sequential Bayes
estimator [1] and is also required to regularize the recognition process. This is because
recognition is based on the appearance of the optical flow patterns induced by the object’s
motion in front of the camera. Although somewhat analogous to approaches employed for
gesture recognition [10, 4, 7, 3], confounding of motion and structure makes it difficult

(if not impossible) to make a confident assertion from a single viewpoint. However the
likelihood of different objects giving rise to similar appearances from different viewpoints
diminishes in the number of viewpoints (temporal regularization). Hence it becomes
possible to make a confident assertion once sufficient data have been gathered.

Generating the appearance manifold for each object [12, 11] presents another problem
as it must account for all of the expected motions. We argue elsewhere that this process
can be made tractable by invoking constraints on the local appearance of rigid-body mo-
tion and camera to object distance [1]. However it is not always feasible to expect human
generated motions to lie within the permissible range. This is where the active vision
approach comes in by means of a paradigm we call the Interactive Visual Dialog (VD).
In addition to the appearance manifold, we construct a second representation called an
entropy map which relates the ambiguity of recognition associated with different view-
points (or poses of the object). The idea behind the VD is for the system to present to
the operator an ordered set of images corresponding to the most plausible hypotheses for
what is being presented to the system, but shown in a different pose - the one that sug-
gests how the object should next be presented to improve the certainty of interpretation.
The operator then moves the object along a trajectory that mimics the optimal motion
sequence. The process repeats until the confidence of interpretation exceeds a prescribed
threshold, generally within 1 or 2 iterations.

The remainder of the paper is organized as follows. Section 2 describes the appear-
ance manifold used in our scheme, along with the details of how it is constructed and the
recognition strategy used to identify it using subspace methods. The sequential recogni-
tion approach used to regularize the interpretations follows next along with an overview
of the entropy maps which serve as the basis for active vision. Section 3 lays out the struc-
ture of the IVD and the details of our particular implementation, with experimental results
presented nextin Section 4. Finally we conclude in Section 5 with a brief discussion about
the results and pointers to further work.

2 Representation and Recognition

For motions in relatively close proximity to a stationary camera, as is the case here, a
significant component of the induced flow will correspond to the shape of the moving ob-
ject provided that there is a sufficient rotational component. For the scenario depicted in
Section 1, we can ensure that the following constraints are met: (a) The distance between
camera and object is bounded, and (b) rotations are limited to axes that are approximately
parallel to the image plane. Objects are swept in front of the camera along a shallow arc
with rotations about the wrist, in quite natural fashion. Under these conditions, kinematic
depth effects will modulate the magnitudes of the corresponding optical flow vectors ac-
cording to the shape of the object in motion. The idea is to use this signature as the basis
for recognition. One can invoke a general position assumption to argue that the likelihood
of several objects giving rise to the same sequence of signatures over different viewpoints
will diminish in the number of viewpoints.
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2.1 Appearance manifold

This suggests that an appearance-based scheme could be used in the following manner.
Since the class of motions is restricted, it is feasible to consider training on a set of ex-
pected motions for each object in the database. By adding the further assumption that
motion can be locally partitioned into a set of curvilinear trajectories relative to the view-
er, it becomes possible to consider an automated training process. Figure 2(a) shows the
robot controlled camera system we use to automatically generate precise trajectories on
a tessellated viewsphere surrounding each object. A complete basis for each object is
generated by moving the camera to each canonical viewpoint and generating a sequence
of curvilinear arcs that typify the motion of the object relative to the camera [1]. The
resulting image sequences are then fed to an optical flow algorithm [2] yielding a second
sequence corresponding to the time-varying optical flow field. Only the magnitudes are
retained, for the reasons cited earlier. ketorrespond to the: x n x 1 vector corre-
sponding to a single instance of the flow field magnitude, whewendn are the image
dimensions. For brevity we will use the term “flow image” to refextsince the latter
refers to a scalar field. The resulting set of flow images, acquired from all viewpoints for
each object, is used to determine a basis for representation using Principal Components
Analysis (PCA) [12].

Next, an appearance manifold is built for each object by projecting its corresponding
x; onto the PCA basis and parameterizing the resulting set with an appropriate functional
representation. Leain denote the parametric representation in this basis. A multivari-
ate normal distribution with densigy(m|0O;) was found to be sufficient for purposes of
recognizing the test objects in our database. The manifold represents the physical theory
predicting possible variations in parameters given each object in the database.

2.2 Sequential recognition

On-line, a human operator moves the the object in front of a camera according to the
constraints outlined earlier. For each of the flow image in the sequence generated, the
recognition strategy computes a degree of likelihood in matches with each of the objectsin
the database. This leads to the formulation of a Bayesian recognition strategy whose goal
is to represent the posterior beliefs over the entire setalfject hypothese$0;} where

i = 1...n, givenasingle flow imagex, by a posterior probability distribution of the form
P(O|x), with discrete (conditional) probability density functip(O;|x)|;=1...,. In order

to attain this goal, the image&, corresponding to the unknown object is projected onto
the basis determined during training, resulting in the parametric descriptijonJsing
standard Bayesian techniques to determine the data support for each object hypothesis
gives:

p(0;]x) « p(mg|O0;) p(O;), 1...n 1)

wherep(0O;) defines the prior probability for each object hypotheSis p(m.|O;) is the
multivariate normal distribution derived during training evaluated at the location in space
defined bym, (For details on the recognition strategy, see [1].). The result is a discrete
conditional probability density function describing the belief in each of the models in the
database, given the flow data.

However, recognition from a single optical flow image can be ambiguous and even er-
roneous. We therefore formulate the problem as a sequential estimation problem, where
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a more robust solution is attained by accumulating evidence in the various object hy-
potheses over time, as each of the flow images in the sequence is presented to the system
during motion. This is accomplished efficiently at the level of the probabilities, by using

a Bayesian chaining strategy that assigns the posterior probabilities at, tif®@; |x;),

as the priors attime+ 1:

P(Oilxt11) o p(Oi]x¢) p(my44]0;), 1...n ()

wherex; is defined as the data set at timendm,,;  ; is the parametric description of

the measured flown,, at timet + 1. Using this framework, a human operator can move
an object in front of a camera, and the system will accumulate evidence in the competing
hypotheses until a satisfactory confidence level is attained.

2.3 Building entropy maps

In the context of an automated supermarket checkout scenario, it is essential that the
recognition strategy minimize the chances of the system of arriving at an incorrect recog-
nition result. In addition, time is limited, and the goal is to converge in the shortest
possible number of steps. For these reasons, we propose a strategy that takes maximal
advantage of a priori information available in order to attain a fast and reliable on-line
solution. Specifically, we propose buildiegtropy map®ff-line during training to relate
recognition ambiguity to viewing position. Once a map is built for each object in the
database, the system can store the locations that are maximally informative in terms of
disambiguating between the objects in the database. This information can then be made
available to an operator on-line to aid in recognition.

To build these maps, we first derive a metric based on Shannon entropy [6] to predict
the likelihood of ambiguous recognition results as a function of viewing position:

H(P(Olx)) = Zp(0i|x) log (3)

1
p(0;]x) '

which relates the ambiguity of the posterior distribution produced by a recognition exper-
iment. Entropy maps are then built off-line, for each object in the database as follows:

1. During training, each optical flow measurementis stored along with its coordi-
nates of acquisition on the viewsphere which, for this type of measurement, refers
to three parameters: latitude, longitude and relative angle of motion between cam-
era and object.

2. Recognition is then performed on each training measurement, resulting in the asso-
ciation of the posterior distributior?(O|x), to each coordinate.

3. The entropy for each measuremdiit,P(O|x)) is computed and stored at its asso-
ciated coordinate. In this context, this implies that several entropy values are stored
at every (latitude, longitude) position, each associated with a different relative mo-
tion.

The resulting entropy map is smoothed so that the minimal entropy location on this map
will correspond to an optimal location which is stable with respect to localization errors.
The final map provides guantitativeprediction of the level of difficulty of recogniz-

ing each object in an on-line experiment. In contrast to human-generated aspect graphs,
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e.g., [8, 9, 5)]), by linking location and discriminability using entropy maps, a set of such
characteristic views can be automatically generated off-line. In the next section, we will
show how these maps can be very informative in the context of planning gaze for object
recognition.

3 Interactive visual dialog

With the entropy maps built off-line, the question is how a human operator can make
maximal use of this prior information on-line during recognition experiments. The pro-
posed strategy works as follows: As the object is moved, a sequence of flow images is
presented to the recognition engine, which accumulates evidence in the various hypothe-
ses over the entire set. At the termination of a particular sweep atttithe system is
prompted for the to: most likely object hypotheses. This information is easily provided

by extracting the tofz maximum a posterioMAP) solutions corresponding {9 O|x;).

These most likely estimates are subsequently used to select the entropy maps to be used
for planning the next best view. Associated with each entropy is the location and motion
that corresponds to the most discriminant viewpoint of the corresponding object. This
information corresponding to the tdphypotheses is then provided to the operator visu-
ally, in the form of a sequence of images depicting the objects moving in at their optimal
viewpoints! The operator, having located the object among the the set, moves the object
along a similar trajectory at the appropriate position. This can be verified visually by ex-
amining the live video input image on the computer screen. Should the object of interest
not be among the choices presented by the system, the operator has the choice of selecting
the nextk hypotheses, or simply moving the object along a new arbitrary trajectory. The
system iterates until a sufficient level of confidence in one of the hypotheses is attained, as
determined by its on-line entropy level. Over time the expectation is that confidence in an
incorrectly chosen hypothesis will decrease as further evidence is uncovered. A flowchart
of the entire system can be seen in Figure 1.

4 Experimental Results

The IVD framework described in this paper was tested through a series of real recognition
experiments, where the task of the system was to recognize an object in a minimal number
of iterations, based on a series of interactions with a human operator. We will illustrate
the system’s ability to (a) resolve recognition ambiguities resulting from tests with single
flow images by accumulating evidence over time, and (b) have the operator plan the next
gaze position and corresponding motion trajectory during on-line experimentation based
on precomputed entropy maps.

4.1 Building entropy maps

Off-line during training, images of 25 household products were gathered at equally spaced
locations around a coarsely tessellated viewsphere (see Figure 2(b)). Specifically, each
object was placed on a rotary table. At each position on the viewsphere, a gantry robot

1Alternately, the system can presergeriesof optimal locations and motions provided this information was
storeda priori.
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Figure 1: IVD system. (a) Setup for data acquisition, (b) system overview.

arm moved along a horizontal and along a vertical arc at fixed distancé&8dmn) from

the object. A CCD camera, mounted on its end-effector (see Figure 2(a)), gathered three
images in sequence along each trajectory from which optical flow was computed (using
a strategy as in [2]). This served to create a local basis for flow. The expectation was
that other on-line motions could be inferred from this basis. Speed normalization was
achieved by normalizing the optical flow magnitudes to lie between 0 and 255. Flow was
used to localize the object of interest within the images.

(b)
Figure 2: (a) Training Setup, (b) Database of Objects.

A low dimensional basis for flow was determined by using standard PCA techniques
[12]. Empirically, it was found that 20 eigenvectors were sufficient to represent the im-
ages. Each image was then projected onto this eigenspace, and the multivariate normal
distributions were computed.

Off-line, entropy maps were built from the flow images gathered. Figure 3 shows
images of an object from the database and the corresponding entropy map taken from
two different camera viewpoints. Each tile corresponds to a particular camera view of
the object at the origin. The tiles are shaded in accordance with their entropy values:
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(b)
Figure 3: (a) Images of a toothpaste tube, (b) corresponding entropy maps seen from
two viewpoints. The system chose the right view as the most informative (seen with
darker shading on the map), and the left view as a relatively bad one (lighter tiles). This
corresponds to an intuitive notion of “good” and “bad” views.

from low entropy (dark) to high entropy (light). Only the best entropy result (among all
those generated from different movements at that location) is shown at each location. The
system located the best viewpoint for identification of this object, one that was maximally
far from the most ambiguous ones. Notice that the entropy maps match an intuitive notion
of viewpoint ambiguity.

4.2 Interactive visual object recognition

Next, the entropy maps were used in a series of real, on-line experiments with a human
operator to test the system’s ability to converge to a fast and accurate recognition result
based on the proposed IVD system. On-line, the operator was asked to move an object in
front of a stationary camera along some curvilinear trajectories, loosely complying with
the set of motion and camera constraints adhered to during training. This implied that the
object was placed at approximately the same distance from the camera as in the training
setup, and was rotated about the wrist where the axes of rotation were parallel to the
image plane. Care was taken to avoid the possibility of fingers appearing in the image.
Figure 1(a) shows the setup used for these experiments.

In order to maintain consistency, four grey-scale images were acquired during each
trajectory. Given that three images were required to compute the flow, this implied that
two iterations of recognition were performed during each trajectory. At this point, the
system displayed the motion sequences corresponding to thedbject hypotheses. If
the operator located the object of interest among these, an attempt was made to mimic this
motion sequence. Part of the challenge was to attain quick success despite the facts that
(a) the motion sequences varied considerably from those trained on, and (b) the resulting
motion couldn’t possibly match the optimal trajectory exactly as they were generated by
a human. The system was said to have converged when an on-line entropy reached an
arbitrarily set value of x 1076,

Figure 4 illustrates an example of a typical result of experiments with objects from
the database. Here, the system was presented with a non-informative viewpoint of the
Liquid Drano bottle. The operator identified the bottle among the top three hypotheses
presented on the screen, and attempted to move the bottle in the most informative manner.
The result was that the system converged to the correct solution in the next iteration.
Figure 4(e) shows the corresponding on-line entropy values as the object was moved in
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Recognition Results Over Time - Drano
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Above one can see results of an IVD experiment with the Drano bottle: (a) First motion sequence generated
by operator. (b) Top 3 object hypotheses generated by system ordered from most (left) to least (right)
likely. The best locations and motions are displayed to the operator (Here, only one image in the sequence
is shown.) (c) The operator located the object of interest and performed the second motion sequence. (d)
The system converged to the correct object. (e) On-line entropy of recognition results over time. The top 3
object hypotheses are displayed at each recognition iteration, with a letter above the iteration corresponding
to the appropriate stage on the left (Recall that each trajectory consisted of 2 iterations of recognition.)

Figure 4: (a)—(d) IVD experiment with Drano bottle, (e) on-line recognition results.

front of the camera. Notice that the system converged after the second trajectory (Recall
that each trajectory consisted of two iterations of recognition).

Figure 5 illustrates an example of the system working in the case of the teddy bear.
The first trajectory in (a) presented a rather uninformative viewpoint of the object, result-
ing in the system having the most confidence in the wrong model. However, the correct
object was among the top three in (b). The operator then performed a motion sequence in
(c) that was close to the one suggested for the bear, resulting in it moving to the position
of most likelihood in (d). However, the motion did not match the suggested one closely
enough to lead to convergence in one step. This is realistic given that the motion was
induced by a human operator. The operator then moved the object in a motion sequence
that was close to the one suggested in (e), and the system converged to the correct solution
in (f). The corresponding on-line entropy values for this experiment can be found in (g).

The advantages of the IVD system can be fully appreciated by comparing these results
to cases where no feedback was provided to the human operator. Figure 5(h) illustrates the
results of an experiment where the operator moved the teddy bear in front of the camera
with no feedback from the system as to where and how to proceed. The operator was
instructed to begin the experiment in roughly the same pose as in the experiment shown
in Figure 5(a)-(g). By examining the entropy over time, one can see that the system took
several more iterations to converge. In fact, the system was presented with viewpoints
of the object that rendered it indistinguishable from the dinosaur doll. This emphasizes
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Figure 5: IVD experiment: recognition of teddy bear. From (a)—(f), one can see the IVD

system. Displayed below it are the on-line entropy results over time for the teddy bear
with (g) feedback,(h) no feedback (only the MAP is displayed here). Notice that the

system took longer to converge in (h).

'

2 4 6 8
Time

the other benefit of using IVD: ambiguous viewpoints are avoided, thus minimizing the
possibility of convergence to an incorrect hypothesis.

The experiment was performed with several other objects from the database, and the
results were quite similar to those presented above. These preliminary results are quite
promising in that the system converged to the correct solution quickly using the IVD
framework in all cases.

5 Conclusions

In this paper we have demonstrated how view-based entropy measures can be effectively
used to steer an appearance-based recognition system towards viewpoints or poses that
minimize ambiguity. The specific case studied was object recognition through the optical
flow patterns induced by an operator sweeping an object by hand in front of a stationary
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camera. A paradigm called the Interactive Visual Dialog was used to provide feedback to
the operator in the form of images depicting how the object should be presented to im-
prove the certainty of interpretation. Experimental results demonstrated the effectiveness
of this feedback, both for keeping the on-line presentation within the training set and for
quickly taking the operator through a sequence of poses by which the correct hypotheses
could be identified with certainty. Although motion-based appearances were used in this
study, the approach is applicable to any view-based method.

Future work will involve more extensive testing of the algorithm, particularly over a
much broader range of permissible motions. This will be possible by using chromatic
keying to remove the presence of moving hands from the images. Although it is highly
unlikely that this approach will soon be found in your local supermarket, it does point out
the possibilities for other applications of machine vision.
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