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Abstract

We address the problem of object recognition in computer vision. We rep-
resent each model and the scene in the form of Attributed Relational Graph.
A multiple region representation is provided at each node of the scene ARG
to increase the representation reliability. The process of matching the scene
ARG against the stored models is facilitated by a novel method for identi-
fying the most probable representation from among the multiple candidates.
The scene and model graph matching is accomplished using probabilistic
relaxation which has been modified to minimise the label clutter. The exper-
imental results obtained on real data demonstrate promising performance of
the proposed recognition system.

1 Introduction

Recognising known objects in cluttered scenes has been the principal goal of computer
vision since its inception. The object recognition problem is inherently difficult due to
noise and the effect of other factors which include geometric transformation of the mea-
surements, geometric distortion, occlusion and clutter. In this paper we address the prob-
lem of object recognition using the model based approach. We take the view that objects
can be represented as a union of planar surfaces. This modelling is completely appropri-
ate for the recognition of polyhedral objects as well as objects which include some planar
patches in their surfaces. Furthermore, the method is applicable to nonplanar objects in
the cases when the deviation from planarity of an object face can be absorbed into other
geometric distortions.
Model based object recognition involves two major problems, namely that of object rep-
resentation and the closely related problem of object matching. A large number of repre-
sentation techniques have been proposed in the computer vision literature. Despite their
essential differences they can be broadly classified into two categories: feature based, and
appearance based. Although appearance based techniques[10] have positive merits, they
can not cope with occlusion and local distortion problems. For this reason we have opted
for a feature based representation.
The matching process tries to establish a correspondence between the features of an ob-
served object and a hypothesised model. The various object recognition techniques pro-
posed in the literature deploy different mechanisms for matching the scene and model
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features. They also differ in terms of how a consistent interpretation is derived from
scene-model feature matches and how the pose is estimated from a consistent interpreta-
tion. The techniques range from the alignment methods [4][5] to geometric hashing [7]
[6] or hough transform methods [9]. In an earlier work [11] it was argued that an effective
object recognition method should be based on the extraction of relatively simple features
as only such features can be reliably detected in complex images. The distinctiveness of
such features can be enhanced by relational measurements. As a suitable tool to achieve
matching the evidence combination method of relaxation labelling was adopted. The
method uses an attributed relational graph for representing both scene and model. Only
unary and binary relations which are made invariant to any pertinent geometric transfor-
mation group are employed. The actual implementation of the method used as features
interest points found on the texture boundaries. The method was shown to work well in
experiments involving both synthetic 2D and real 3D objects in cluttered backgrounds.
However, it was found that the recognition performance of the system decreased for com-
plex scenes where the size of objects becomes inevitably small. The main reason for the
degradation was the failure to extract interest points reliably. It was noted that in contrast
to interest points, regions remain stable over a large range of scales.
In this paper we use region based features for attributed relational graph representation of
scene and model objects as suggested in[12] [2]. As in [2] we make the representation
more resilient to occlusion by using multiple representations for each node of the scene
graph. However, in contrast to our previous work we do not involve all the representa-
tions of the scene graph in the iterative relaxation labelling algorithm used for matching.
Instead we adopt the most probable representation for each scene node before starting the
labelling process. A methodology for identifying this representation from the multiple
candidates is proposed. A further speed up of the matching algorithm is gained by hy-
pothesis pruning at each step of the matching process.
The paper is organised as follows. In the following Section we described the proposed rep-
resentation. The relaxation algorithm adopted for the attributed relational graph matching
is described in Section3. The experiments carried out and the results obtained are pre-
sented in Section4 . Section5 draws the paper to conclusion.

2 Representation

We first overview the invariant representation of the scene and model images adopted.
It is based on regional features. Accordingly we regard an image of the scene or model
as a set of regions. Then for each region we provide a basis matrix which allows us to
transform the region to a normalised space in which the corresponding regions of model
and scene should have identical appearance subject to noise. In this manner we construct
an Attributed Relational Graph in which normalised scene regions are considered as graph
nodes and binary relations between neighbouring region pairs constitute graph edges. It
has been shown in [12] that a matrixB which possesses the following properties can be
used to transform a region to an invariant space:

1. B is a non-singular matrix.

2. MatricesB andB0 associated with corresponding regionsR, R0 respectively are
related asB0 = BT whereT is a transformation matrix which mapsR to R0. In
other wordR0 = RT.
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Such a matrix is called basis matrix.
Using the basis matrix,B, barycentric coordinates of an arbitrary pointP of regionR can
be defined as :

CB(P ) = PB�1 (1)

The defined coordinate system is transformation group invariant since an arbitrary point
P of regionR and the corresponding pointP 0 of regionR0 have the same barycentric
coordinates:

CB0(P 0) = CBT (PT) = (PT)(BT)�1 = CB(P ) (2)

The barycentric coordinates can be used as unary relations of regionR. Similarly, a
binary relation matrixBij associated with a pair of regionsRi andRj can be defined as
Bij = BiB

�1
j . LetB0

ij be a binary relation matrix for regionsR0

i andR0

j in the scene
which correspond to regionsRi andRj respectively of a model, we can readily show that:

B
0

ij = B
0

iB
0�1
j = (BiT)(BjT)

�1 = BiTT
�1
B
�1
j = Bij (3)

Thus the binary relation matrices are transformation group invariant as well.
To find the basis matrix of an arbitrary regionR, we initially address the problem of
finding an affine transform that modifies the regionR to regionr in a normalised space
where the modified corresponding regions are comparable.In order to uniquely define
such transform we impose the following constraints on it:

1. the reference points(x0; y0) and(x1; y1) of the regionR are to be mapped to points
(1; 0) and(0; 0) of r respectively.

2. the normalised regionr is to have a unit area and the second order cross moment
equal to zero.

To simplify the transformation task we split it into two sub-tasks. First, using a similarity
transformation matrixTs, the reference points(x0; y0) and(x1; y1) of R are mapped to
points(1; 0) and(0; 0) in the new regionR0 respectively. The matrixTs can readily be
shown to be:

Ts =
1

kn

0
@ x1 � x0 y0 � y1 0

y1 � y0 x1 � x0 0
x20 + y20 � y0y1 � x0x1 x0y1 � y0x1 kn

1
A (4)

wherekn = (x1 � x2)
2 + (y1 � y2)

2 is the square of distance between the two reference
points. Second, we determine the affine transform,Ta, that modifies new regionR0 to
the normalised regionr. Such a matrix can be calculated taking into account the relations
between the second order moments ofR0 andr :

Ta =

0
@ 1 0 0

�u1;1=u0;2 k 0
0 0 1

1
A (5)

whereu1;1; u0;2 are the second order moments of the normalised regionr and k =
kn=(Area of region R). The transformation matrix that will map regionR to the
normalised regionr will then be given asT = TsTa.
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Returning to the main problem, it is easy to check that the matrixT
�1 possesses the basis

matrix properties.Thus we can define the basis matrix transformations as :

B = Ta
�1
Ts

�1 (6)

Thus for each region the basis matrixB is determined in terms of the local(Ts) and
global(Ta) geometric features of the region. In other words the basis matrix of a region
captures geometric features of the region. This information from each pair of regions; Ri,
Rj ; is conveyed to the binary relation matrix,Bij, assosiated with the region pair.
In this representation we regard the given images as a set of regions and consider the cen-
troid of a region as one of the required reference points. The way the second reference
point is selected is different for scene and model. In the case of the model the highest cur-
vature point on the boundary of the region is chosen as the second reference point, while
in the scene for each region a number of points of high curvature are picked and conse-
quently a number of representations for each scene region are provided. The selection of
more than one point on the boundary is motivated by the fact that an affine transformation
may change the ranking and distort the position of high curvature points.
Now we represent all of the model images in a graph as�G = f
; �X ; �Ag and refer to
it as the model graph. In this graph
 = f!1; !2; � � � ; !Mg denotes the set of nodes
(normalised regions) and�X = f�x1; �x2; � � � ; �xMg is a set of unary measurement vectors
where for each node,!i, we have a vector of measurements�xi. Furthermore, the binary
measurement set�A = f �Aij j(i; j)i 2 f0; � � � ;Mg; j 2 �Nig represents a set of binary
measurement vectors associated with the pair of neighbouring nodes where the neigh-
bouring set �Ni associated with the node,!i, contains all of the nodes corresponding to
the regions in a neighbourhood of the node!i.
We consider the vector�xi =

�
S;C

�
as a unary attribute vector associated with the

node,!i, where the components of vectorS are the coordinates of a number of equally
spaced samples on the boundary of theith normalised region and vectorC as a repre-
sentative of the region colour expressed in terms of theY UV components. The binary
measurement vector�Aij associated with the pair nodes,!i, and,!j , is defined as follows:

�Aij =
�
Bij; ColorRelationij ; AreaRelationij

�
whereBij denotes the binary relation matrix associated with the region pair and vector
ColorRelationij and scalarAreaRelationij express the colour relations and area ratios
of the region pair respectively.
Similarly, the graph,G = fa;X ;Ag, represents the scene image wherea = fa1; � � � ; aNg
is the set of scene graph nodes and,X , and,A, denote the set of unary and binary mea-
surements respectively. Note that the representation of the scene differs from that of the
model in the sense that for the scene representation more than one bases are provided
for each scene region. The multiple representation for each scene node is defined in
terms of a set of unary measurement vectors,x

k
i , which possess the same components as

the model ones, with indexk indicating that the vector is associated with thekth repre-
sentation of theith node. Also related to each neighbouring pair of the regionsai and
aj binary relation vectorsAkl

ij are defined with the properties of the model binary vec-
tors . The multiple unary measurement vectorsx

k
i and binary relationsAkl

ij constitute
the combined unary and binary relation representation x

¯i
= fxki jk 2 f1; � � � ; Lgg and

A
¯ij

= fAkl
ij jk; l 2 f1; � � � ; Lgg where,L, denotes the number of representations used for

the scene regions.
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3 Matching

For matching we have adopted the relaxation labelling technique of [1, 8, 13] and adapted
it to our task. The problem considered is much more complex than the previous applica-
tion of relaxation methods due to a large number of nodes in the model graph. Similarly
to [13] we add a null label to the label set to reduce the probability of incorrect labelling.
The essential difference in our matching problem is that the product support function de-
rived in [13] is not applicable due to the scene clutter driving the total support to zero,
thus masking the coherent support from consistently labelled objects. For this reason we
have adopted the benevolent sum support function to measure the supporting evidence
from the neighbouring objects as in [8].
In the previous work [2] we considered all the available representations of the object
throughout the labelling process. This made the method complex and time consuming
particularly when the number of model nodes increased.To reduce the complexity of the
problem, we divide the matching process into two stages: first, finding the best represen-
tation of object under a particular label hypothesis and second, updating the label proba-
bilities by incorporating contextual information. In the first stage, we compare the unary
attribute measurement of each object of the scene,ai, with the same measurement for all
the admissible interpretations and construct a list,Li, containing the labels which can be
assigned to the object. Simultaneously for each label in this list we find the best represen-
tation. For this purpose we propose a novel method of assessing each representation. It
is based on the measurement of the mean square distance between the normalised region
boundary points stored in a vector,S, and the unary attribute vector of the hypothesised
label. In other words the merit ofkth representation of objectai in the context of the
assignment of label!� to that object is evaluated as:

E(�i = !�) = min
k

(xki [S]� �x�[S])
2

In ideal conditions, for the correct basis, the above measurement for the corresponding
regions would be zero. However, due to errors in the extraction of the reference points
and as a result of the segmentation noise affecting the boundary pixel positions this mea-
surement is subject to errors. Thus criterion functionE is compared against a predefined
threshold. A label is entered in the list of hypotheses only if the measurement value is
less than the threshold. The best representation basis,k, is also recorded in the node
label list. Note that the above strategy may introduce more than one representation for
each candidate node label. This is likely to happen when the label and object shapes are
symmetric. In such cases, we need to compare the support received for this assignment
from the neighbouring objects and select the most consistent representation. At the end of
this process we will have a label list for each object with the best representation for each
label in the list. Hence we do not need to distinguish between different representations by
superscript indices on the unary and binary vectors. Instead we index them with a star to
indicate that the best representation is being considered.
In the second stage, we consider the possible label assignments for each object,ai, and
iteratively update the probabilities using their previous values and supports provided by
the neighbouring objects. In addition to the above pruning measures, at the end of each
iteration we eliminate the labels the related probabilities of which drop below a threshold
value. This will make our relaxation method faster and more robust as well. Indeed the
updating of probabilities of unlikely matches not only takes time but also increases the
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probability of incorrect assignments due to increased entropy of the interpretation process
which is a function of not only probability distribution but also of the number of possible
interpretations. Returning to our problem of assigning labels from label set
 to the set
of objects in the scene graph, letp(�i = !�i) denote the probability of label!�i being the
correct interpretation of objectai. In the iterative process we consider all possible assign-
ments for objectai and the related probabilities using their previous values and supports
provided by the neighbouring objects. As mentioned before we combine the iteration
rules in [13] and [8] to derive a new iteration formula defined as:

p(n+1)(�i = !�i) =
p(n)(�i = !�i)Q

(n)(�i = !�i)P
!�2Li

p(n)(�i = !�)Q(n)(�i = !�)
(7)

Q(n)(�i = !�) = p(n)(�i = !�)
X
j2Ni

X
!�2Lj

p(n)(�i = !�)p(A
�

ij j�i = !�; �j = !�)

(8)
where functionQ quantifies the support that assignment(�i = !�) receives at thenth
iteration step from the neighbours of objecti in the scene.
In the first step of the process the probabilities are initialised based on the unary measure-
ments. Denote byp(0)(�i = !�i) the initial label probabilities evaluated using the unary
attributes as:

p(0)(�i = !�i) = p(�i = !�i jx
�

i ) (9)

Applying the Bayes theorem we have :

p(0)(�i = !�i) =
p(x�i j�i = !�i)p(�i = !�i)P

!�2Li
p(x�i j�i = !�)p(�i = !�)

(10)

with the normalisation carried out over labels in the label listLi. Let � be the proportion
of scene nodes that will assume the null label. Then the prior label probabilities will be
given as :

p(�i = !�) =

�
� � = 0 (null label)
1��
M

� 6= 0
(11)

whereM is the number of labels (model nodes).
We shall assume that the errors on unary measurements are statistically independent and
their distribution function is Gaussian i.e.

p(x�i j�i = !�) = Nx�
i
(�x�;�u) (12)

where�u is a diagonal covariance matrix for measurement vectorx
�

i . In the support
function,Q, the termp(A�

ij j�i = !�; �j = !�) behaves as a compatibility coefficient in
other relaxation methods. In fact it is the density function for the binary measurementA

�

ij

given the matches�i = !� and�j = !� . Similarly, the distribution function of binary
relations is centred on the model binary measurement�A�� . It is assume that deviations
from this mean are modelled by a Gaussian. Thus we have:

p(A�

ij j�i = !�; �j = !�) = NA�

ij
( �A�� ;�b) (13)

where�b is the covariance matrix of the binary measurement vectorA
�

ij .
The iterative process will be terminated in one of the following circumstances:

1. If in the last iteration none of the probabilities changed by more than threshold�.

2. If the number of iterations reached some specified limit
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Figure 1: Demonstration of region normalisation

4 Experimental Results

In this section we present the results of experiments designed to demonstrate the advan-
tages of the proposed method of recognition of objects in cluttered test images. Initially
to show how regions in our method are normalised, let us consider the two boundaries
in figure 1-a which are related by affine transformation. The marked points represent the
extracted reference points on each region. For each region a point of high curvature and
the centroid of the region constitute the region reference points. After normalisation we
expect the corresponding reference points to coincide in the predetermined coordinates
(0; 0) and(0; 1) and the boundaries should be closely aligned with each other. The effect
of normalisation step is shown in figure 1-b for the two boundaries in figure 1-a. The
sligth error in the boundaries alignment is due to the error in the extraction of the region
reference points.
Next we show how the proposed method of node reference basis selection can be used
to prune the list of candidate labels assigned to the object. To illustrate its effectiveness
we show in figure 2 the boundary of a normalised scene region and compare it with the
boundary of three model regions. Each row of the figure presents the comparison for the
two different representations of the scene region. In order to get a good agreement ( low
valueE) both the interpretation and the representation have to be correct. For a good fit
the value ofE is at least two orders of magnitude smaller than any other combination of
label and representation. We now proceed to demonstrate the recognition ability of the
proposed method in a realistic scenario. As shown in figure 3, the objects to be recognised
are traffic signs. Close-up views of the objects are used as the model images.

The recognition method is applied to a number of outdoor test images taken in differ-
ent illumination conditions. Examples are shown in figure 4. As can be seen, the imaging
viewpoints are such that the objects of interest in the test images are significantly smaller
than the model images. We used the colour segmentation method proposed in [3] to ex-
tract image regions. Then based on the extracted regions we represented both the scene
and model images in terms of the scene and model graphs. In contrast to the previous
work[2] where we chose three representations for each object node, in this application we
chose nine representations to provide greater robustness to noise and change of view point.
This increased multiplicity is motivated by two considerations. First as our objects have
only a few regions each, we can not risk miss-assigning even one node of the model. This
is particularly important also from the point of view of object disambiguation as in some
of the model images one specific region will allow us to distinguish between two models.
Second, as in the proposed matching algorithm only one of the object representations is
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Figure 2: Sensitivity of the proposed criterion function, E, for assessing candidate repre-
sentations

involved in the labelling process, increasing the number of candidate representations is
more tolerable than in the previous work.
The impact of the proposed evidence combination algorithm was significant both compu-
tationally and performance wise. In the first step, using the proposed criterion,E, at least
30% of incorrect hypotheses have been eliminated from the label list of each object. The
iterative labelling process, as a result of continuously pruning unlikely hypotheses, con-
verges very fast so that at the end of third iteration the most of the irrelevant regions in the
scene will have been assigned the null label. After five iterations the difference between
the corresponding label probabilities in two successive steps is negligible and algorithm
terminates. It should also be mentioned that the matching algorithm is not very sensitive
to parameters�u and�b which have been determined experimentally.

In spite of the large number of extracted regions in each scene image, the method
is able to recognise90% of the model regions correctly and among all the irrelevant
scene regions only1% do not take the null label. This compares very favourably with the
previous method where these figures were80% and7% respectively.

5 Conclusions

We addressed the problem of model-based object recognition in computer vision. In
our approach the model and scene were represented in the form of Attributed Relational
Graphs using multiple representations at each node of the scene ARG. We argued that
this enhanced the stability of the scene image representation in the presence of noise and
significant scaling. We proposed a novel method to identify the most probable represen-
tation among the available candidates at each scene node. By reducing the number of
representations involved, the relaxation matching process was less likely to get stuck in
local optima. Further speeding up of the labelling process was accomplished by pruning
the candidate model labels associated with the scene nodes at each iteration. The exper-
imental results obtained on real data demonstrated that the proposed method can deliver
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Figure 3: The traffic signs as the library of model images

Figure 4: The test images
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good recognition performance even under severe viewing conditions. It also convincingly
outperforms our earlier method.
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