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Abstract

We tackle the problem of object recognition using a Bayesian approach. A
marked point process [1] is used as a prior model for the (unknown number
of) objects. A sample is generated via Markov chain Monte Carlo (MCMC)
techniques using a novel combination of Metropolis-coupled MCMC (MCM-
CMC) [2] and the Delayed Rejection Algorithm (DRA) [4]. The method is
illustrated on some synthetic data containing simple geometrical objects.

1 Introduction

We address the problem of object recognition on a scene containing an unknown number
of objects. Our approach is Bayesian using a marked point process [1] as a prior model
for the (unknown number of) objects. In a marked point process each object is described
by a pair(l,m), wherel denotes a location and a vector of marks. The vector of marks
contains information governing attributes such as type, size or texture. Our objective is
to make inference about the number of objects and their characteristics. A similar ap-
proach was used by [9] in which ordered sets of vertices were used to describe an object’s
shape. We choose a simpler shape model using simple geometrical objects, rectangles and
ellipses. The appeal of these models lies in the small number of parameters required to de-
scribe the shape. We face difficulties in sampling from a particularly peaked multimodal
posterior distribution. We propose a method for overcoming such problems.

1.1 Image model

Our data are noisy images. Each is discretised into a lattice of square pix&spofs

andC columns. The centres of each pixel are represented by the coordinatesor
observationg,... Let U represent the set of possible objects. We denote each object by
xz; wherei = 1, ...,k andk is the number of objects. Any configuration of objects can
then be described by an unordered set {z1,z»,...,z;}. Let A denote the image
spacg<0.5,C <0.5] x [€0.5, R <0.5]. Despite the image being discretised horizontal
and vertical locations of an object are measured on a continuous scale over the ranges
[<0.5,C <0.5] and[<0.5, R <0.5] respectively. The location of an object is its centre
which we denote by; = (¢, ¢£Y), for objecti, with the superscripts andv denoting the
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horizontal and vertical locations respectively. We assume that our data are produced by
the following model,

Yre = Wpre +€rc T =0,..., R&1; c=0,..0C&1;

wheree,.. i.i.d. N(0,02). We regardu,.. as the true value of the intensity in pixel c).

We assume that the true scene has a foreground and background whose intensities we
denote by andu® respectively. A pixel is regarded as lying in the foreground if it lies
inside an object, i.e. its centre lies inside an object. Otherwise the pixel is regarded as
lying in the background. Then

fifpixel (r, lies in the foreground
Hre = { K P (T C) d (1)

ub ifpixel (r,c) liesin the background’

This model has been used in several image processing applications, notably by [7], [9]
and [8].

1.2 Model for an unknown number of objects

Using a marked point process [1] each objects represented by a point giving its lo-
cation and attached to each object is a vector of marks. The marks are assumed to lie in
some space, thus the object; liesinU = A x  and any configuration of objecis
is a marked point process éh We model the distribution af by means of its density
7(x) relative to a basic reference process, which is a Poisson object proc&ssviti
intensityu = A x w wherel is the Lebesgue measure Arandw is a probability measure
on 2. Then under the Poisson object procesd/otihe total number of objects follows a
Poisson distribution with meanU). Further, given that there akeobjects, these objects
are i.i.d. distributed i/ with distributionu/u(U).

To model interactions we use a pairwise interaction model for the joint density of
x ={x1,..., 2},

m(x) ocy* [T f(ai,2;). (2)
i<j

The density (2) is a model for an unknown number of objects. In this mpdel0 is a
constantk is the number of objects anfd: U x U — [0, oo) is the interaction function.
For any fixed choice of, providedf is well-defined and integrable, the valueyofan be
chosen to encourage or penalise the number of objeictthe configuratiorx.

Now let~ be any symmetric, reflexive binary relation@n We specify an interaction
function f by reference to the relation. The binary relation- can be defined as

Ti~Tj < R(l’l) N R(I'J) 7é 0, (3)

where R(z;) represents some region of the image connected with objeft and the
interaction functionf can be chosen to exhibit the kind of spatial interaction present. We
take R(z;) to represent the spatial extent of objeand definef as

_ 0 if i~ Tj
(i zj) = { 1 otherwise (4)

thus forbidding objects to overlap. This model is known as the hard-core object process.
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1.3 Mark distributions

As we are concerned with rectangles and ellipses only two parameters are required to
describe an object’s shape. Thus the set of marks contains parameters for type, horizontal
and vertical size, orientation and intensity. The object type is denoted by a categorical
variabler; for objecti. We assign equal probability to each object type in the type mark
density.

The horizontal and vertical size parameters are denotef’bgnd? respectively.
The actual horizontal and vertical sizes of an object in pixels are given/%¥ and
¥?6%. The constants" andé? are the standard horizontal and vertical sizes and must be
specified in connection with the particular image data. In the applications we consider we
assume)? andi? have maximum and minimum values denoted/y )" andq?,
respectively. These values are assumed known. We choose a truncated gamma density
as prior fory (for both object types) with parameter4 and 3" parameterized so that
18" anda”/"* are the mean and variance, respectively, before truncation. There is an
additional hierarchical level of our model to account for variation in object size. We let
the parametes” follow a gamma distribution with parametefsands" (again adopting
the parameterisation in whiaft/c" is the mean ane’*/s"” is the variance). The set up
for vertical components is identical.

The prior oné;, the orientation, is taken to bg(0, w) for both object types since
the object shapes we consider are identical under rotations theaugbr the intensity
parametey; we choose a normal distribution with me&and variance?. The Bayesian
hierarchical model is displayed in Figure 1 as a Directed Acyclic Graph (DAG).

2 Simulation from the posterior
The Bayesian approach makes use of the posterior density which is given by
m(x|y) oc m(x)m(y[x), (5)

to make inference about the underlying scenegiven the datay. The posterior com-
prises prior and likelihood models which are respectively used to reflect our beliefs about
the true scene and to model the noise. Our prior model is made up of (2) and the mark
distributions. The likelihood is assumed to be additive Gaussian noise

rvp o [ e {Homel ) ©)

We make the assumption that the noise varianéeis known. We have a good estimate

for o2 since we consider some artificial data for which we know the noise level. However,
in many real situations the noise is unknown and needs to be estimated. An alternative
which is within the scope of our modeling approachis to include an additional hierarchical
layer foro and estimate from the simulation.

In many Bayesian problems the posterior is only known up to proportionality (as is
the case here) and direct evaluation of (5) is impossible. We make inference based on a
sample obtained via Markov chain Monte Carlo (MCMC) techniques in which our target
distribution is (5).
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2.1 MCMC sampling techniques

MCMC techniques originally appeared in the statistical physics literature and have be-
come popular in recent years in statistics, particularly with the increase in computational
power. The Metropolis algorithm [6] proceeds by proposing some new value for a vari-
able of interest. A decision on whether to accept the proposed new value is based upon a
ratio R. The proposal is accepted with probability

min{1, R}, ()

otherwise we retain the current value. Extensions of this algorithm proceed in the same
proposal-accept/reject fashion using an expression of the same form as (7). Of particu-
lar interest is the reversible jump algorithm of [3] for variable dimension problems and
the Delayed Rejection Algorithm (DRA) of [4] which allows additional moves to be at-
tempted should our original move be rejected.

In addition we consider Metropolis-coupled MCMC (MCMCMC) which was pro-
posed by [2]. The idea is to runparallel chains each with a different target distribution.
Let us denote the target distributions By(z), i = 1,...,n. We setr(z) = x(z) and
choosers (), ..., 7, (x) to improve mixing. A complete sweep is made of all move types
in each chain. We then attempt to swap the states of two chains using the Metropolis-
Hastings algorithm [5]. Inference is based solely on output from chgin).

When implementing MCMCMC we need to specify a family of distributiange),

i =1,...,n. Our preference is some family of the form

mi(2ly) o< w(z)mi (y|z), (8)

where the effect of the likelihood is altered in different chains by some temperature
scheme. Using (8) also allows us to retain prior information regarding the size and num-
ber of objects in any configuration. Such a choice ensures that the prior terms disappear
from the ratioR in (7) making the move relatively simple to implement.

2.2 Sampling from the posterior

The successful and reliable application of MCMC requires that we achieve satisfactory
mixing over all of the parameters in the parameter space. In our application this means
that we move freely between different configurations of objects and do not become stuck
in some local mode nor to move too slowly through the parameter space. The sampling
procedure may be regarded as the fitting of all possible configurations of objects (as de-
fined by our model) to the data and the accumulation of votes for each of these with those
visited more often deemed to be more probable representations of the data. It is therefore
imperative that good mixing is attained if reliable inference is to be made.

In the application we consider the posterior distribution is exceedingly peaked and
multimodal. Sampling from the posterior proves to be extremely difficult because of this
and should a naive sampling approach be adopted we find the sampler moves about very
slowly and has difficulty moving between modes.

One sweep of our algorithm consists of attempts to update all of the model parameters.
Note that the procedure could be carried out in parallel usipgocessors to sample from
each of then chains. The sampling procedure contains the following moves

() update locations,
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(i) update types,
(i) update size scales,
(iv) update horizontal parameters,
(v) update vertical parameters,
(vi) update orientations,
(vii) update intensities,
(viii) split or merge,
(ix) birth or death,
(x) swap two configurations.

Moves (i) - (vii) use standard Metropolis-Hastings updates [5] and are carried out for each
object. Proposals to alter the number of objects in moves (viii) and (ix) require the use of
reversible jump MCMC [3]. Note that in both of these moves a random choice is made
between proposing to increase or decrease the number of objects. In addition there is a
DRA step applied to move (viii) in which we make a second attempt to split or merge
should the first attempt fail.

After cycling through each chain and updating each of the parameters for each object
and the number of objects we attempt to swap the configurations of two chains. This
move uses MCMCMC [2] and the DRA [4]. Suppasandj are the chains chosen for
swapping. We define" order adjacency between two chaingi& j| = a. A chaini is
chosen at random and we propose in the first instance to swap its configuration with that
from a chainj which is chosen at random and satisfying at |@&étorder adjacency, i.e.
|i 4| > 1. Constructing the move in such a fashion allows us to make larger jumps and
hence explore the posterior much quicker thus requiring fewer sweeps. Should the move
fail then a second stage move is proposed. We retain the originally selected chain and
now attempt to swap its configuration with that of a chiiwhich is chosen at random
and satisfyingl*! order adjacency, i.eli < k| = 1. Note that it is perfectly feasible to
consider more stages in a bid to make larger jumps around the parameter space, although
in our application we do not find this to be necessary.

3 Application to data

Our sampling procedure and model are applied to the noisy synthetic image in Figure 2.
The true image contains 8 objects of which 5 are rectangles and 3 are ellipses. The image
is square with 50 by 50 pixels. Note that the orientation and intensity parameters are fixed
in this example. The sampler is run for 160000 iterations of which 80000 burn-in. We
simulate 7 parallel chains.

Some output is displayed in Figures 3 and 4. First we comment on Figure 3. The
histogram of the number of objects (a) shows that the sampler favours fewer than the
true number of objects since the posterior mode is 5, the mean is 5.533 with standard
deviation 1.276. We experience difficulty in finding the smaller objects and find that there
are few occasions when the sampler finds multiple objects in the place of a true object.
The boxplot (b) shows the spread of the number of objects.

Histograms for the number of rectangles and ellipses can be found in (¢) and (d).
Rather than considering these individually we look at the number of rectangles and el-
lipses when there are = 6 objects, reflecting the posterior mean forThe plot (e) is a


majid



BMVC2000

jittered scatter plot of the number of rectangles against the number of ellipses. The plot
takes its name since the observations are jittered around the actual intersection point, each
observation being placed at random in a square centred on the actual point of intersection.
Clearly there are a large number of observations for some of the pairings and this makes
it difficult to get a handle on the individual frequencies. We focus on the most probable
pairings, which are easily determined through (f), for which we can see the distribution
of rectangles and ellipses is based around 5 or 6 objects with strong posterior probability
of 2 or 3 ellipses with 4 or 3 rectangles, see (g). The uncertainty over the types of the
6 objects is due to there being less of a difference between rectangles and ellipses the
smaller the objects.

Figure 4 (a) contains samples from the posterior taken every 1000 iterations after burn-
in. Despite the relatively small number of samples it is quite easy to observe the samplers
behaviour. There is a lot of activity around the object in the top right hand corner and
the three objects which lie in the bottom right hand part of the image indicating some
uncertainty over the number of objects and their marks in theses areas. It can also be
seen that successfully merges objects together on occasion. The two small objects we
thought to have missed in many configurations can now be seen to be the small ellipse
at the bottom right of the large rectangle and the small rectangle in the bottom left hand
corner of the image. The samples indicate there is some variation in location, size and
type suggesting that the sampler has been successful in exploring the parameter space.
The remaining plots in Figure 4 contain samples drawn from the posterior for different
values ofk and pixelwise posterior probabilities. The latter two plots (g) and (h) contain
the pixelwise probability of a pixel being in the foreground and the pixelwise probability
of misclassification (i.e. placing a pixel in the foreground when it in truth it lies in the
background and vice versa). The areas of activity can be clearly seen from these two plots.
In particular the misclassification of pixels around the edge of ellipses can be clearly seen.

As far as splitting and merging is concerned we find that the sampler does not visit
configurations containing clusters very often unless there is some degree of uncertainty
over what is actually there and the objects are not too large, as is the case with the objects
in the bottom right corner of the image. Nevertheless this is to be expected since the shape
model we have specified does not assign very high probability to two objects covering the
same pixels as an existing object, nor is it particularly flexible. This raises an important
point regarding shape models and implies that in the scenario we consider it may be
preferable to consider using a more flexible shape model, although at the expense of an
increased number of model parameters.

In complex problems such as this, where the dimensionality is high, it is essential
to design efficient samplers if the parameter space is to be explored swiftly. Overall the
sampling mechanism we have implemented has successfully allowed us to move between
models and attain good mixing ovierwhich in turn allows reliable inference to be made.
Varying the model parameters relating to the expected number of objects and the size of
objects in the image can help us find the smaller objects and multiple objects where the
true objects lie but only when we depart considerably from our prior beliefs about the true
scene. For example, increasignd forcing more objects into configurations, as well as
decreasing proves more successful in finding all of the objects. One refinement of the
sampler which may be considered is to change the birth and death move to propose the
birth of smaller objects. We would expect this to lead to more new objects being intro-
duced into configurations, and whilst this would not change the results of the simulation,
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it may mean we explore the parameter space swifter and therefore require fewer iterations
in total. The method is also quite robust in the presence of noise and can achieve satis-
factory results simply by careful parameter choice ofithehains. This is of particular
interest since in many applications the noise level is unknown yet obtaining an accurate
estimate of the noise is not crucial to the implementation of our sampler.

The method has been successfully applied in some other examples in which object size
varies. Model variations, allowing the orientation and intensity parameters to vary, have
also been successfully tackled. Recent work has focussed on a real problem on an image
containing galaxies and stars in which the aim is automated classification. Consideration
of this real problem in which the object shapes are more complex than in our synthetic
example illustrates the success of the method. We expect the method to be useful in a
variety of problems, not just image analysis. Further goals include the formulation of
some sound implementation advice for general application of the sampler.
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Figure 1: Directed Acyclic Graph (DAG) for the model formulated. In the DAG squares
represent fixed quantities and circles unknowns. Solid lines denote deterministic relation-
ships and dotted lines denote logical relationships.

Figure 2: Synthetic image (a) and (b) noisy version.
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Figure 3: Posterior summary. (a) Histogram kor(b) Boxplot fork. (c) Histogram for

the number of rectangles. (d) Histogram for the number of ellipses. (e) Jittered scatterplot
of ellipses and rectangles. (f) 2-d histogram of ellipses and rectangles. (g) 2-d histogram
of ellipses and rectangles fér = 6. (h) 2-d histogram of ellipses and rectangles for
k=8.
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Figure 4: Analysis of synthetic imagewith fixed orientation and intensity — posterior
summary. Samples from the posterior (a) taken every 1000 iterations after burn-in. Of
these samples we have (b) for= 4, (c) fork = 5, (d) fork = 6, (e) fork = 7 and (f)

for k = 8. Pixelwise posterior probability of (g) inclusion and (h) misclassification.
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