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$EVWUDFW

This paper addresses the problem of interpreting underwater image sequences under
conditions of extremely poor visibility. The human visual system can often make
correct interpretations of images that are of such poor quality that they contain
insufficient explicit information to do so. We assert that this can only be achieved by
utilising prior knowledge of the scene in several forms.

By modifying an Extended Markov Random Field technique, we show how image
data can be dynamically combined with expectations of that data during image
segmentation. Furthermore, we show how the interpretations of scene content and
camera position can be mutually improved within an Expectation-Maximisation
framework�

�� ,QWURGXFWLRQ
An important problem in vision based robotic navigation, is that of recovering the position and
orientation of a vehicle mounted camera relative to some recognisable object in the field of view.
At any given instant, it is often possible to estimate the camera position from the recent history of
the vehicle’s motion. If the robot possesses a model of an important object in the scene, it is
possible to refine this position estimate by firstly distinguishing that object from the background,
and secondly by matching the model to the segmented image.

The second of these two problems has generated considerable interest, and a variety of
strategies have been proposed for its solution. Often, however, these solutions depend on the
acquisition of high quality images under constrained conditions. Typically these include constant,
uniform lighting and excellent visibility.

Comparatively little attention has been given to the more difficult problem of
recognising an object in the adverse conditions of the real world. In contrast we know that the
human visual system is extremely robust, even in conditions of dynamic, non-uniform lighting,
poor visibility and occlusion. Further, there are many instances where the human visual system
can correctly interpret an image, even when that image possesses insufficient information to
enable such interpretation. It is our belief that such a system can only function by making use of
some prior knowledge of the scene.
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Our algorithm (figure 1)
estimates the current camera position
from the recent vehicle motion using a
predictive filter. A predicted (and
segmented) image is then generated by
projecting a 3-D model of the
environment onto an image plane at the
estimated position. The predicted image is
used to help interpret a relatively poor
visibility observed image by means of an
Extended-Markov Random Field (E-
MRF) segmentation technique. The
resulting segmented image is compared
with the environment model to provide a
new estimate of the camera position. This
improved position estimate can then be
fed back into the start of the algorithm
resulting in an iterative scheme which we
show to be a variant of the Expectation-
Maximisation (EM) algorithm�

�� %DFNJURXQG
Christmas [1], [2] describes an algorithm for determining camera position by matching a
projection of a known 3-D CAD model to an observed object in the image. He further suggests
that the camera position in one image be used to estimate the camera position (for a moving
vehicle) in the next image. Christmas demonstrates an application to autonomous navigation in a
sub-sea environment, however he restricts himself to good visibility (in air) images taken of an
object which is silhouetted against constant lighting in the laboratory.

Fairweather et. al. [3], [4], [5] tackle the problem of incomplete, poor visibility images
captured under extreme, underwater conditions. They introduce the Extended-Markov Random
Field (E-MRF) as a means of using a predicted image to help segment a poor quality observed
image. They also demonstrate the superior performance of the E-MRF compared to both the
conventional MRF and also a spatio-temporal MRF variant.

We note that Fairweather achieves correct segmentation by using a highly accurate
initial estimate combined with relatively large weightings on the information taken from the
predicted image. In contrast, when we apply the same method using significantly erroneous initial
estimates, it fails to generate a correct segmentation although it does significantly improve upon
the initial estimate. This improvement suggests an iterative scheme whereby the improved
estimates are fed back into the algorithm until convergence.

Dempster [6] presents the Expectation-Maximisation (EM) algorithm as an iterative
solution to problems where the observations can be viewed as incomplete data. The EM algorithm
has since been presented by several authors in differing styles [7], [8], [9], [10], [11], though
usually in the context of Gaussian mixture models. Neal and Hinton [7] express the algorithm in
terms of calculating an expected distribution (E-step) for unobserved variables (in our case pixel
class) in terms of observations (in our case pixel intensity) and a current estimate of parameters
(in our case camera position). The Maximisation or M-step then re-estimates the parameters to be
those with maximum likelihood. It can be shown that, with each iteration, the true likelihood
improves or at least remains constant until a maximum is reached.
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�����1RWDWLRQ
For each image, we can define:
θ = the (six degree-of-freedom) vector representing the true position and orientation of the

camera relative to the object in the image.

Q
θÖ  = the estimate of θ   at the beginning of the nth iteration of the algorithm.

For each pixel at a general position (i, j) in the image, we define:

I L M  = intensity of the pixel;  C L M  = the true class of the pixel, either object or background.

ML&
�

Ö = estimate of C L M� from a projection of the object/environment model assuming
Q

θÖ .

It is necessary to make a distinction between ML&
�

Ö  and ML
(& �

Ö  which is an adjusted estimate of

C L M�  following the segmentation stage of the algorithm. For the total image we can also define ,

to represent the complete set of I L M�  for all values of (i, j) and likewise & , 
Q

&Ö and
(

Q
&Ö

respectively where n denotes the nth iteration of the algorithm. Notice that there is an obvious,

geometrical one-to-one correspondence between θ  and & , and also between 
Q

θÖ  and 
Q

&Ö ,

however no such geometrical correspondence exists between 
Q

θÖ  and 
(

Q
&Ö .

�����([SHFWDWLRQ�0D[LPLVDWLRQ�DOJRULWKP
*LYHQ�DQ�LPDJH�FRQWDLQLQJ�D�NQRZQ�REMHFW��ZH�ZLVK�WR�H[WUDFW�WKH�SRVLWLRQ�DQG�RULHQWDWLRQ
RI� WKH� FDPHUD� ZLWK� UHVSHFW� WR� WKDW� REMHFW� 7KLV� SUREOHP� PD\� EH� EURNHQ� GRZQ� LQWR� WZR
VHSDUDWH�WDVNV��)LUVWO\��HVWLPDWLQJ�ZKLFK�SRUWLRQV�RI�WKH�LPDJH�FRQVWLWXWH�REMHFW�DV�RSSRVHG
WR� EDFNJURXQG� �VHJPHQWDWLRQ��� 6HFRQGO\�� HVWLPDWLQJ� D� FDPHUD� SRVLWLRQ� WKDW� EHVW� ILWV� WKLV
VHJPHQWDWLRQ��7KHVH�WZR�VHSDUDWH�WDVNV�DW�RQFH�VXJJHVW�DQ�LWHUDWLYH�VFKHPH�WKDW�UHF\FOHV�WKH
UHVXOWV�RI�WKH�VHFRQG�VWDJH�WR�UH�FRPSXWH�WKH�ILUVW�VWDJH�DQG�FRQWLQXHV�WR�SHUIRUP�WKLV�F\FOH
XQWLO�FRQYHUJHQFH�

We require an approach that ultimately leads us to the value of θÖ  that is most likely

given our observations , . Thus we seek θÖ  that maximises the probability P( , |θÖ ) or (Dempster

[6], Neal and Hinton [7]) maximises a log likelihood function:

L(θÖ ) = log P( , |θÖ ) (1)

Such a problem lends itself to solution by a variant of the Expectation-Maximisation
(EM) algorithm which we define as follows:

E-step: Given an initial estimate 
Q

θÖ  (at the start of the nth EM iteration) and corresponding set

of class labels 
Q

&Ö , compute the expected probability:

E{ P(
(

Q
&Ö | , ;θ ) } (2)

M-step: Compute a new position estimate 
�

Ö
+Qθ  which maximises this expectation.

Within the M-step, our approach is firstly to segment the image, producing a new

estimate of the pixel classes 
(

Q
&Ö with maximum likelihood. Secondly we compute a new position

estimate which best fits the pixel classes so chosen. In the following two sections we examine
these stages in greater detail.

majid




�����(�VWHS
In order to compute (2) we assume:

E{ P(
(

Q
&Ö | , ;θ ) } = P(

(

Q
&Ö | , ;

Q
θÖ ) (3)

since 
Q

θÖ  is currently the expected value of θ . It then follows (from Bayes’s law) that:

P(
(

Q
&Ö | , ;

Q
θÖ ) ∝  P( ,  | 

(

Q
&Ö ; 

Q
θÖ ) ×  P(

(

Q
&Ö ;

Q
θÖ ) (4)

�������7KH�([WHQGHG�0DUNRY�5DQGRP�)LHOG
To compute the right hand side of equation (4) we modify a segmentation technique, first

developed by Fairweather et. al. [3], [4], [5]. The expression consists of two parts. Fairweather

calculates the first of these by initially segmenting the image off-line and using the result to

generate histograms approximating the class conditional distributions p(I � | ML&
�

). In contrast, we

have automated this process by making the approximation:

p(I �   | (&
�

Ö ; θÖ ) ≈  p(I �   | &
�

Ö ; θÖ ) (5)

(The validity of this assumption depends on how closely θÖ approximates θ ).

It is now comparatively easy to generate histograms of ,  for each value of 
Q

&Ö  to which we then

fit normal distributions.
The second part of the expression is found with an extended Markov Random Field

approach. Conventional MRF approaches first perform an initial segmentation by simply
thresholding the image, using discriminator values derived from the normal distributions of

equation (5), to give class estimates 
7

Q
&Ö  (i.e. the thresholding assigns a class 7&

�

Ö  to every pixel

(i, j)). The probability of correctness of the new classification ML
(& �

Ö  of a pixel (i, j) is then related

to the number of that pixel’s nearest neighbours that are classified similarly:

P( ML
(& �

Ö ) ≡ P( ML
(& �

Ö  ; 7

QMPL
NQP

&
����

Ö
∈++

) (6)

Where (m,n∈k) defines a neighbourhood or clique around the pixel (i, j). Fairweather et. al.

extend the idea of Markov dependency by including the corresponding estimate ML& �

Ö  as part of

this clique, thus incorporating extra (prior) knowledge of the scene into this stage of the algorithm:

P( ML
(& �

Ö ) ≡ P( ML
(& �

Ö  ; 7

QMPL
NQP

&
����

Ö
∈++

, ML&
�

Ö ) (7)

The right hand expression of equation (7) is usually expressed in the form of an exponential
known as a Gibbs random field:

P( ML
(& �

Ö ) = 
=

H ML8 �

−

(8)

where Z is included as a normalising constant to prevent equation (8) returning probabilities
greater than one.

The exponential part of this equation consists of weighted components:

ML8
�

 = ∑
∈NQP�

�@Ö�Ö�>
��

7

P

( &&-6 ++ + 
�

6 [J( (

ML
&

�

Ö ,&Ö )] (9)

Here, 6  and 
�

6  are weighting constants and J is a special function defined as:

��� ED-  = 




≠
=
E�D��LI�������

E�D��LI�������
(10)
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�������2SWLPLVDWLRQ�E\�,WHUDWHG�&RQGLWLRQDO�0RGHV
The purpose of the M-step is to choose a new estimate of camera position and orientation 

�

Ö
+Qθ

that maximises expression (2). We take the approach of firstly finding the optimal segmentation
(

Q
&Ö that maximises expression (2) given 

Q
θÖ . We then re-estimate the camera position as

�

Ö
+Qθ which best fits the chosen pixel classes of 

(

Q
&Ö .

Optimal segmentation of the image is achieved by choosing a set of classes that
maximises the right hand side of equation (4). The first part of this expression is approximated
with normal distributions in equation (5) which have an exponential form. The second part of the
expression is expressed as a Gibb’s random field, equation (8), which also is of exponential form.
Hence it is possible to combine the two into a single expression by rewriting the exponent (U part)
of equation (8) to include the exponential part of the normal distributions:

i.e. 8  is rewritten as:

∑
∈�

�@Ö�Ö�>
Q

( &&-6 ++ +
�

6 [J( (

ML
&

�

Ö ,&Ö )]
�

��

�

�

�

�

� �

��
�ORJ�

ML

ML

ML

F

FML

F

,

σ

µ
σ

−
+−  (11)

where �

� MLF
σ  and 

MLF �

µ  are the variance and mean of the class conditional distribution of

intensities that corresponds to the choice of (

ML
&

�

Ö  currently being considered for pixel (i, j).

It is thus possible to achieve optimal segmentation by finding the set of classes 
(

Q
&Ö that

minimises the sum of all values of U over every pixel in the image.

i.e. minimise ∑
MLDOO

ML8
�B

�

(12)

Since this actually corresponds to maximising the logarithm of the right hand side of
equation (4), we consider our approach to be consistent with that of Dempster [6] and also Neal

and Hinton [7] in the sense of choosing a new value of 
Q

θÖ  that maximises a log likelihood

function, equation (1).
There is no obvious way of choosing optimum values for the constants 

�
6 and 

�
6 . In

many random field applications, such constants are chosen by trial and error. In this case we have
chosen values such that the contribution from the predicted image term is approximately half that
of the spatial random field and class conditional terms.

Expression (12) contains many variables since it is necessary to consider all possible
classes over all pixels in the image. It is therefore not possible to search the space exhaustively to
locate  this minimum. We know of two established methods  [12], [13] for minimising such an
expression. Simulated Annealing is a stochastic relaxation technique which simulates the way that
complex systems in the natural world achieve global energy minima. It is a powerful but
relatively slow technique. In preference, we choose the method of Iterated Conditional Modes.
This method enables decomposition of the expression (12) so that it applies to single pixels only.
This method runs considerably faster, though at a risk of converging on local minima. Neal and
Hinton [7] note that this kind of estimate, which improves likelihood without necessarily
maximising it, will still always result in the true likelihood improving as well. Dempster [6] refers
to such variants as “generalised EM (GEM)” algorithms.
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The final stage of the M-step involves finding a new estimate of camera position and orientation

�

Ö
+Qθ  that best fits the new pixel classes that were chosen in the segmentation stage. We define a

likelihood function for 
�

Ö
+Qθ  that is based on correlation between 

�
Ö

+Q&  (a function of 
�

Ö
+Qθ ) and

Q
&Ö . In order to maximise this likelihood function, we suggest an iterative method of gradient

ascent.

� 5HVXOWV
As an example, we apply the algorithm of section 3 to the problem of underwater navigation of an
ROV (Remote Operated Vehicle). These unmanned submarine vehicles are used in the inspection
of offshore oil-rig structures. The images used feature a scale model of a typical off-shore
structure, fabricated from welded steel tubing. The images were captured by a “roving eyeball”
type mini ROV at night. The only illumination is from lights mounted on the ROV itself.

Genuine underwater images because we
wish to test the algorithm under the harshest
visual conditions possible. The sub-sea
environment is particularly challenging to
machine vision systems because it contains a
variety of mechanisms by which images are
degraded [14], [15], [16]. Water molecules
absorb light at most wavelengths and suspended
particles cause scattering. Both of these
mechanisms lead to severe attenuation with
range. Particles larger than the wavelength of
visible light cause partial occlusion. The complete
absence of background lighting requires the use
of vehicle mounted spotlights. These project a
circular area of brightness which often saturates
the camera. In contrast, areas outside of these bright patches are plunged into darkness. This
uneven lighting is also constantly changing with the motion of the vehicle relative to an
environment of varying reflectivity. The problem of machine perception in such a hostile
environment has so far attracted comparatively little attention from researchers.

�����)LUVW�LWHUDWLRQ�RI�WKH�(0�DOJRULWKP
������ ,QLWLDO�SRVLWLRQ�HVWLPDWH
The initial estimate of camera position is
generated from the results of the three previous
images using a simple second order predictive
filter to model the  motion of the ROV. This
estimated position is then used to project a
predicted (and segmented) image. Notice that this
initial estimate is clearly and significantly
erroneous when compared to the observed image
(figure 3).

Figure 2: A typical underwater image

)LJXUH����3UHGLFWHG�DQG�REVHUYHG�LPDJHV
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�������7KUHVKROGLQJ
The current position estimate is combined with the observed image, to estimate class conditional
probability distributions, equation (6). The intersection of these distributions (figure 4) defines a
discriminating value which is used to threshold the image (figure 5).

�������(�05)
The classes of both the neighbourhood clique and the corresponding pixel in the predicted image
are used to choose the most likely class for each pixel using the E-MRF segmentation technique
(figure 6).

The E-MRF extends Markov dependency to include the class of the corresponding pixel
in the predicted image. To illustrate the superior performance of the E-MRF, we compare it here
to the segmentation achieved with a conventional MRF (figure 7) in which Markov dependency is
limited to neighbouring pixels. The conventional MRF incorrectly highlights an area to the left of
the object. The orientation of the vertical part is incorrect and the right hand part is over-enlarged
and heavily distorted.

Notice that both schemes have failed to locate the portion of object in the lower half of
the picture. This is not surprising since this part of the object is entirely invisible even to the
human eye. In fact the observed image contains no information about this part of the object. The
algorithm is nevertheless still able to locate this lower portion of object by fitting its model to the
segmented image (figure 8). It is interesting to note that humans who have prior knowledge of the
object structure are also able to locate the lower portion in a similar fashion.

Figure 4: Class distributions
Figure 5: Thresholded image

)LJXUH����(�05)�VHJPHQWDWLRQ )LJXUH����&RQYHQWLRQDO�05)�VHJPHQWDWLRQ
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����� ([WUDFWLRQ�RI�FDPHUD�SRVLWLRQ
Successive projections of the object model are best fitted (figure 8) to the segmented image by
means of gradient ascent (figure 9). This camera position is used to project a new predicted image
for the next iteration of the EM algorithm. Notice that this new predicted image does describe the
lower part of the object even though this information does not exist in the observed image.

��� 6XFFHVVLYH�(0�LWHUDWLRQV
In this example, the EM algorithm is seen to converge after seven iterations (figure 10). With each
iteration, the algorithm produces a visible improvement on the previous position estimate (figure
11). The rate of improvement diminishes with successive iterations.

During successive iterations, the algorithm re-estimates the class conditional probability
distributions (object and background). The distribution for “background” sharpens and pulls to the
left (figure 12) whereas the distribution for “object” flattens and pulls to the right (figure 13). The
algorithm progressively learns to distinguish between object and background by learning that
“background” is consistently dark whereas “object” is brighter but with greater intensity variation.

)LJXUH����,PSURYHPHQW�RI�FRUUHODWLRQ�ZLWK

�JUDGLHQW�DVFHQW

)LJXUH�����,PSURYHG�HVWLPDWH�RI�REMHFW�GLVWULEXWLRQ

ZLWK�VXFFHVVLYH�LWHUDWLRQV

)LJXUH �� 0RGHO EHVW ILW

)LJXUH�����)LQDO�HVWLPDWH )LJXUH�����,PSURYHPHQW�ZLWK�VXFFHVVLYH�LWHUDWLRQV

)LJXUH�����,PSURYHG�HVWLPDWH�RI�EDFNJURXQG

GLVWULEXWLRQ�ZLWK�VXFFHVVLYH�LWHUDWLRQV
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� 3HUIRUPDQFH
��� $FFXUDF\
It is difficult to quantify the accuracy of the algorithm since the “ground truth” of real underwater
images is difficult to measure and is rarely known. Experimental work in which artificial poor
visibility scenes were modeled using computer graphics techniques [17], suggests that with
extremely poor images, a very large initial error of approximately 30% on all ranges and
orientation angles can be reduced to approximately 10% or less in most directions. Clearer images
and smaller initial errors often result in perfect segmentation.

����&RPSDULVRQ�ZLWK�&RQYHQWLRQDO�7HFKQLTXHV
It is clear that the extended MRF with Expectation Maximisation outperforms conventional MRF
segmentation as shown in figures 6 and 7 above. What is less clear is how this algorithm
compares with other techniques when applied to a very low quality image. To this end we have
attempted to interpret the scene using a conventional model-driven approach�by fitting a CAD
model of the underwater structure directly to the grey scale image. We define a goodness of fit
measure that is designed to maximise the class separation (difference of means) whilst minimising
the class variances:

“Goodness of fit” = 
��

���

EDFNJURXQGREMHFW

EDFNJURXQGREMHFW

σσ

µµ

+

−
(13)

This measure was maximised by gradient ascent. The results (figure 14) are visibly poor
compared with those of the EM / E-MRF  algorithm, given the same initial estimate (figure 3):

� &RQFOXVLRQV
We have described a new algorithm for the interpretation of poor visibility images. The algorithm
is shown to segment a very poor visibility underwater image and significantly improve an
erroneous initial estimate of camera position and orientation relative to an off-shore structure in
the image. The results demonstrate a clear improvement over both conventional MRF and model
based scene interpretation.

The algorithm allows machine vision systems to make use of prior knowledge of their
environment in several novel ways. Firstly, the predicted image is used to automatically update
the probability density functions required for MRF segmentation. Secondly, the predicted class of
each pixel is introduced within an extended MRF model to enable image segmentation to be both
data and expectation driven. Thirdly, our estimates of image interpretation and camera position
are mutually refined within an Expectation-Maximisation framework.

)LJXUH�����5HVXOW�RI�ILWWLQJ�WKH�PRGHO�GLUHFWO\�

WR�WKH�JUH\�VFDOH�LPDJH�

)LJXUH�����6XSHULRU�SHUIRUPDQFH�RI�WKH�(0���(�05)

DOJRULWKP�
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The use of prior knowledge has enabled the algorithm to interpret parts of the image
which contain little or no useful information, producing similar interpretations to those arrived at
intuitively by human observers. The algorithm learns about its environment with each successive
iteration and adjusts the relative contributions of the predicted and observed information by
responding to the visibility conditions both at any given moment and in any given portion of the
image. Future work will investigate the use of more sophisticated tracking algorithms [18] and the
incorporation of underwater lighting models.
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