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Abstract

In this paper a novel approach to performing classification is presented. Dis-
criminant functions are constructed by combining selected features from the
feature set with simple mathematical functions such as, x, +~, maz, min.
These discriminant functions are capable of forming nonlinear discontinuous
hypersurfaces . For multimodal data more than one discriminant function
maybe combined with logical operators before classification is performed.
An algorithm capable of making decisions as to whether a combination of
discriminant functions is needed to classify a data sample, or whether a sin-
gle discriminant function will suffice, is developed. The algorithms used to
perform classification are not written by a human. The algorithms are learnt,
or rather evolved, using Evolutionary Computing techniques.

1 Introduction

Traditional decision theoretic methods strive to perform classification via the wis-of
criminant functions Given M functionsd; (x), ..., dwm(x), M classesvy, . .., wmn,, and

a vector of features = (z1,...,x,). The functionsd; (x),...,dx(x) are known as
discriminant functions ii;(x) > d;(x), whenx belongs to class;;. Common prac-

tice is to construct a decision boundary between two classes using the single discrimi-
nant functiond;; (x) = d;(x) — d;j(x) = 0. This has the property that;(x) > 0 if

x is from classv;, andd;; (x) < 0if x is from classv; [6, pp 579-580]. This approach
works well when two classes are linearly separable and unimodal. However, when two
classes are not linearly separable, overlap, or are multimodal, deriving a discriminant
function that discriminates between the two classes is neither trivial nor obvious.

One approach to this problem is to learn the discriminant function from training data.
Two commonly used method that achieve this are MLP neural networks and decision
trees which form discriminant functions from multiple intersecting hyperplanes. In the
research presented in this paper the discriminant functions are learnt using Evolutionary
Computing techniques and take the form of hypersurfaces which may be nonlinear and
discontinuous if necessary.
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2 Evolutionary Computing

Biological evolution may be modeled as a two step process [11]. Step one is selection,
and step two is random variation. Individuals living within an environment have a set of
behaviours which are a response to this environment. Some of these behaviours are better
suited to the environment and are able to exploit it. However, some individuals will ex-
hibit behaviours that are not suitable for the environment and so they perish whilst others
survive. This is selection. The survivors reproduce, either sexually or asexually, and pass
to their offspring the genetics responsible for their behavioural traits. No individual is

a perfect copy of its parent(s), since individual genotypes are subject to mutation. This
random variation leads to new behaviours that may, or may not be better suited to the
environment. The evolutionary cycle is then repeated.

Evolutionary Computing (EC) is a field of research concerned with optimization and
search algorithms that mimic biological evolution [3]. These algorithms are collectively
known as Evolutionary Algorithms (EAs). In this paper an EA is used to search the space
of ATD algorithms for an algorithm with high performance. The procedure for achieving
this is as follows. Initially, a population of candidate algorithms is randomly created. The
population is then evaluated on a training image. This training image, or more specif-
ically the feature vectors of the training image, is the populations environment. Due to
their random creation, these initial algorithms do not perform ATD very well. However,
some perform better than others, i.e. exhibit behaviours which are better suited to the
environment. The top% of the algorithms are then selected to be the parents of the next
generation of algorithms. The selected algorithms are then randomly mutated to produce
children which replace the botto(®00 — )% of the population of algorithms. This pro-
cess is repeated over many generations resulting in a population of high performing ATD
algorithms.

2.1 Genetic Programming (GP)

One field of research in EC is GP [9]. GPs are encoded as tree structures in prefix notation.
The internal nodes of a GP are known as the functions of the GP, and the leaf nodes are
known as the terminals of the GP. If for example the GP function set{wax }, and

the terminal set waga, b} (which would be the feature vector in our application) then a
possible GP we may constructisx a b+ a a = (a X b) x (a + a) = 2ba®. If we

were to mutate the first symbol of our prefix tree (k¢ to a + to form a new GP (an
offspring) we would create- x a b + a a = a(b + 2). For our application GP is used to
learn discriminant functions. If the offspring GP provides better class discrimination than
its parent, then it may be retained as a parent of future generations, else it may be culled.

3 The Environment Manipulating Mutable Automaton
(EMMA)

3.1 EMMA's Architecture

As with any human written procedural program, the ATD algorithms undergoing evolu-
tion have a main program, and functions that are called by the main program. To facilitate
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the mutation of the algorithms, the main program takes the form of a Finite State Automa-
ton (FSA), and the functions are encoded GPs. Each state of the FSA has a GP embedded
within it, in addition to two logical functions which are used to explicitly gather evidence
as to a targets classification.

An offspring EMMA is produced by applying one, or all of the following mutations.
Add a state, delete a state, change the start state, change a transition(s), change a state
logical function(s), change a GP function(s), change a GP terminal(s), extend a GP sub-
tree, and shrink a GP sub-tree. The use of these mutations allow the evolutionary process
to design the architecture of the algorithm, a task normally performed by a human pro-
grammer.

3.2 Performing Classification with EMMA

The GP terminal set of EMMA is the feature set of the problem in hand. The features
are combined using the GP function set to form discriminant functions. Selection of the
GP functions and terminals is guided by the evolutionary process. Thus, feature selection
is achieved as the algorithms evolve, a process which normally needs to be performed
explicitly before a classification algorithm is trained.

The logical functions are used to combine the decision spaces when an objects classi-
fication is not clear cut. In real world imagery all targets do not appear the same. Targets
may be large or small, bright or dull, or obscured. This being the case, a classifier that
can perform in-class discrimination as well as inter-class discrimination is desirable. If
we were to derive a discriminant function to perform target non-target discrimination,
then the features that gave the best inter-class discrimination would be used. However,
the feature vector may also contain features that give good in-class discrimination. The
EMMA architecture allows the use of more than one discriminant function when per-
forming classification. Each may have different features, thus allowing them to perform
different tasks. The decisions made by these discriminant functions may then be com-
bined logically before arriving at a classification. For example, let us assume that the first
discriminant functionf, called by EMMA specializes in bright targets and the second,
F», indull. Correct classification of bright and dull targets could then be achieved with the
statementf F; OR F; then target. Statements such as these are implicit in the EMMA
architecture due to the FSA component.

EMMA is executed as follows assuming the start state to be state 0 (dep9ted
A feature vectorx = (z1,...,z,) to be classified is presented to EMMA. The state
discriminant functionFj, which may use 1 taw of the features, is then evaluated and is
treated as the state input, and, in the start state, as the state output. A positive return from
Fy is treated as a logical true (binary 1), and a negative return as a logical false (binary
0). A transition to another state, say, is then executed based on the value returned by
Fy. On enteringyg, Fj, is executed, and again the value returned is mapped to O or 1. The
returned value is then combined with the output of the last state via one of the state logical
functions, and forms the state output. Again, a transition to a new state occurs based on
the value returned by}. This procedure continues until the maximum number of user
defined transitions has occurred, or the halt state is entered. The final output is used as the
classification, 1 indicating target, and 0 indicating non-target. The functionality of a state
and its associated transitions is depicted in Table 1.

EMMA'’s architecture has a number of properties worthy of note. Classification of
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State| Input/ OutputO; Next Statey,,
0, — 0;_1 AND Fk, if Fi, <0 )4, if Fi, <0
" 1 0i_1 OREy, if Fi, >0 " g, f Fr>0

4, Fy

Table 1: Representation of a stgjeand its transitions.

if Fy,
[F OB <O 0, NAND I
].IkaZO
a:Op—)Oi,l AND I d:Oi'—)Oi,1 NORT
b:Oi’—>Ol;1 ORI €2Oil—)0i,1 XOR1TI

Table 2: Mappings used for shorthand notation.

multimodal or overlapping data is obtainable. This is because no one discriminant func-
tion need be learnt for any one class. If for example a class is bimodal, a discriminant
function for each of the clusters can be learnt and concatenated with a logical OR. To
achieve this EMMA has the ability to make a decision as to which discriminant function

to call next, and how to logically combine it with previously called discriminant functions,
based on the classification the current discriminant function is assigning to the sample. In
addition, since the discriminant functions are constructed from the features, two samples
from the same class may cause a discriminant function to return very different values.
This in turn influences EMMA's decision as to which discriminant function to call next,
and consequently causes different logical combinations to be formed. Thus, no two sam-
ples from the same class need be classified using the same features. Instead the most
appropriate features for that sample are used. To the author’s knowledge these properties,
and EMMA's versatility, are not found explicitly in the literature, making this a novel
approach. To clarify the classification process, a worked example is presented in Section
3.3.

3.3 Example Classification Problem

To enable visualization of the classification process, a two class example, with a two
dimensional feature space is presented. The example chosen is that of classifying two
intertwined spirals, which has been a challenge for pattern classification algorithms, and
has been the subject of much work in the Neural Network community [1, 2, 10]. Each
spiral is composed of 97 points, has a radius of 6.5, and has 3 revolutions. For this
problem the feature vectar= (x;, z2) consists of the X, y coordinates of the points that
form the spirals. Figure 2(a) shows the spirals, in which the circles represent class one
and the squares represent class two. In Figure 2 (e) and (f), an incorrectly classified point
from class one is represented by a star, and incorrectly classified point from class two is
represented by a diamond. The GP terminal set used by EMMA for this problemyis
R,}, where x, y are the coordinates of a point on the spiral,Rr@ (—1, 1) is a random
constant, and the function set usedis, —, x, +, sin, cos}.

Figure 1 shows an evolved three state EMMA, and its functiGysF;, andF», that
classifies each point of the two spirals correctly. This EMMA is used to demonstrate
how classification is achieved. For completeness whilst working through the example,
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O/c
1/a
0/b H H

2
Fy = 4.180636962 sin <3.251366387x+ %)
(z — 0.205963 y) cos (%972;?;))
(z +y)
Fy, =sin(3y — ) (— cos(0.55221 ) — cos(cos(zy)))

F =

Figure 1: EMMA that solves the spiral problem. The start statg.isThe notatiornr/3
denotes an input af and an output of5.

a full description of the state transitions and outputs is given rather than referring to the
mappings of Table 2.

On entering the start stagg, Fy is executed and becomes both the inpahd current
outputO;. At this stage);_, andl cannot be logically combined by NAND or XOR (this
states logical functions) since there has been no previous ofpyt A transition to
stateq, then occurs. On entering state F} is executed and provides the state input. If
F; > 0thenthe halt state is entered and the outp(%is= O; 1 AND F; = Fy AND Fj.
Referring to Figure 2 (c) and (e), the halt state is entered for all points which lay in the
positive region defined b¥, and their classification is given iy AND F;. All of these
points are now correctly classified, and EMMA has determined that no further evaluation
of them is necessary. K; < 0 then a transition to statg occurs, and the output is again
Fy, AND F;. On entering state,, F» is executed producing the state input.Fif > 0
then the halt state is entered and the outp@is= O;,_; OR F» = (Fp AND F;) OR F.
Referring to Figure 2 (f), any point from class two that was incorrectly classified whilst
in the previous state is now correctly classified Fif < 0 then EMMA remains in the

same state until the maximum number of allowed state transitions has been performed.

EMMA then halts correctly classifying the points of class one which have not already
been classified. A more efficient EMMA would have moved straight to the halt state
for F5, < 0 and still correctly classified the remaining points. However, no evolutionary
pressure was applied to force halting before the maximum number of state transitions
occurred, and so this repeated looping is expected.
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(a) Two spirals to classify (b) Fo (c) F1
(d) Fy (e)Fg AND F; (f) (Fo AND F1) OR F3

Figure 2: The output of the EMMA shown in Figure 1. The dark regions represent a
positive output from the function, and the light a negative.

4 Application to Real World ATD Problem

EMMA was applied to the detection of ships within images produced from Synthetic
Aperture Radar (SAR) carried on board the ERSsatellite. This problem was chosen
since it has been tackled before by Foulkes and Booth [4, 5] using both Multi-Layer
Perceptron (MLP), and Kohonen neural networks, and Howard et al. using two staged GP
[8, 7]. Foulkes and Booth achieved their best results using the Kohonen neural network
(which contained 2 x 12 nodes), and so these results are used as one of the benchmarks
when assessing EMMA's performance. Before training their NNs Foulkes and Booth
first ran a statistical bases target detection algorithm over the images. This detector did
detect all targets but had a high false alarm rate. Foulkes and Booth trained their NNs
on the positive returns from this detector thus reducing the task of the NNs from that of
performing target detection on the whole image, to one of removing the false alarms of
the statistical based detector. A similar approach was taken by Howard et al. They used
GP to construct a ship detector but found that it gave a high false alarm rate. They then
evolved a second GP that re-classified the mistakes made by the first. The results of this

1ERS: European Remote Sensing.
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So  pixelintensity

S1  average pixel intensity of 33 window

Ss  average pixel intensity of a8 window

Ss  average pixel intensity of ax/7 window

Sy  average pixel intensity of 289 window

Ss  average pixel intensity of the perimeter of a3window

Se¢  average pixel intensity of the perimeter of 8%

S;  average pixel intensity of the perimeter of a 7 window

Ss  average pixel intensity of the perimeter of a@window

Se  standard deviation of pixel intensity of the perimeter ofe33vindow
S10 Standard deviation of pixel intensity of the perimeter ofeb5nvindow
S11  standard deviation of pixel intensity of the perimeter ofa/Avindow
S12  standard deviation of pixel intensity of the perimeter of@window

Si13 S1—Se
Sia S1— 857
Si5 S1—Ss

Table 3: Statistical features used for ship detection.

two stage GP strategy are used as the second benchmark for EMMA.

Five images were used in both these studies which were split into training and test
sets. The training set consisted of a single training image and two validation images, and
the test set consisted of two test images. The same images and ground truth were used
to evaluate EMMA. On inspecting the images provided by Foulkes many of the ships
indicated in the ground truth could not be seen (by a human). Within the training image
there was supposed to be 77 ships. Of these the author felt that only 57 could be safely
classified as ships, and so during training the remaining 20 were designated as ocean.
This view was also taken by Howard et al.

To gauge the performance of their algorithms, Foulkes and Booth, and Howard et al.
used the well established figure of meftD M = NfinNgt , whereNy; is the number of
true target detection®\y,, is the number false alarms, ang; is the total number of ships
in the ground truth data set [12, p 75]. For consistency this figure of merit is also used
to gauge the performance of EMMA. Sixteen statistical feat§ges. . , S15, were used
in the ship detection problem which are the same as those used by Howard et al. These
features form the GP terminal set and are given in Table 3. The GP function set used was
+, —, X, +, max, andmin, wheremax returns the maximum of its two arguments, and
min the minimum.

5 Experimental Results

An EMMA algorithm evolved to perform ship detection is shown in Figure 3, and its out-
put on an unseen test image is shown in Figure 4. A comparison between this EMMA,
the Kohonen NN, and the two stage GP is shown in Table 4. Table 4 shows that the
performance of EMMA compares very favorably with the performance of both the Ko-
honen NN and two stage GP. The evolved EMMA is a very simple algorithm with only
three computational states, and hence three discriminant functions. As can be seen from
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Fy :(S() + 515) - (512 + 7.215)
Fy =min[S14, S15] + min[So, S12] + So
S
_ <mm [5.095, %] + S5+ Ss + Si1 4 Sia + 53512>
2
S9S14 + S13 — Se
Ss + S12 + S13 — 3.364

F, =510 +

Figure 3: EMMA evolved to perform ship detection.

FOM
Image | Kohonen NN | Two stage GP, EMMA
Test1 0.67 0.67 0.75
Test 2 0.72 0.69 0.83

Table 4: Performance comparison of Kohonen NN, two stage GP, and EMMA.

Figure 3 the algorithm may perform classification at any one of three stages. This allows

a data sample to be classified with as little as three features, or up to eleven features de-
pending on what the algorithm decides is most appropriate for that sample. Thus, feature
selection has occurred at two levels. At a top level, eleven of the possible sixteen features
have been selected for use in the problem, and at the individual data sample level where
between three and eleven features may be used depending on the particular sample being
classified.

6 Conclusions

In this paper a novel method of logically combining decision spaces has been presented.
These decision spaces are formed by discriminant functions constructed from selected
features from the feature set. Feature selection, the construction of the discriminant func-
tions, and the construction of the algorithm architecture were all evolved (learnt) using
Evolutionary Computing technigues. The evolved algorithms are very simple and were
shown to out perform both Kohonen and MLiReural networks, and two stage GP on the

2The Kohonen NN was shown to out perform an MLP in [4]
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Figure 4: Output of EMMA on Test image 2. The squares are the true detections, and the
two circles are the False detections.

problem of detecting ships in SAR imagery of the English channel, when gauging their
performance with the figure of merit presented in Section 4.

Further research is now being carried out in which the FSA component of EMMA is
being replaced by a Turing Machine.
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