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Abstract 
 

Fast and accurate analysis of fluorescence in-situ hybridisation (FISH) 
images depends upon two components: a classifier to discriminate between 
artefacts and valid signal data, and well-discriminating features to represent 
the signals. After processing the image, we evaluate candidate feature sets 
by illustrating the probability density functions and scatter plots for the 
features. This analysis indicates the relative importance of members of a 
feature set, helps in identifying sources of potential classification errors and 
recommends several size, intensity and hue-based features for representing 
FISH signals. The recommendation is assessed by the probability of 
misclassification of a neural network based hierarchical strategy, and also 
by a feature selection technique making use of a class separability criterion. 
Represented by these features, nearly 90% of valid signals and artefacts 
within a set of 400 test images are correctly classified. 

1  Introduction 
Fluorescence in-situ hybridisation (FISH) allows the detection of specific DNA 
sequences in intact cells and chromosomes. It enables selective staining of various 
sequences in interphase nuclei and therefore the detection, analysis and quantification 
of specific numerical and structural chromosomal abnormalities within these nuclei. 
For example, trisomy (triplication) of chromosomes 13 and 21 is associated with Patau 
Syndrome and Down’s Syndrome respectively. FISH is a widespread and diversely 
applied technology that is employed in many fields such as karyotype analysis, gene 
mapping, and clinical diagnosis of disease [2]. 

FISH images result from the fluorescence of three dyes: one for the cell nucleus 
and two for DNA hybridisation dots (for example, associated with chromosomes 13 
and 21).  To estimate the distribution of chromosomes per cell, it is necessary to 
inspect a large number of cells, particularly when the frequency of abnormal cells is 
low. Dot counting, the enumeration of signals (also called dots or spots) within the 
nuclei, is considered as one of the most important applications of FISH, yet there has 
been little progress in automating this task. Analysis of FISH imagery could be useful 
for the automation of this laborious and tedious screening task. Dot counting that relies 
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on the conventional approach of using an auto-focusing mechanism [8] suffers from a 
few shortcomings [6]. Therefore, we base FISH dot counting on images that are 
sampled at a fixed focal plane. This method is motivated by the assumption that nuclei 
are approximately uniformly distributed in the sample, so that translations at a fixed 
focal plane will provide a statistically equivalent sample as projections through 
different focal planes. This method overcomes most of the shortcomings of auto-
focusing, but it relies on the acquisition of sufficient analysable images and more 
intensive image analysis. Dealing with many unfocused nuclei and signals, the system 
needs an improved discrimination capability between focused and unfocused signals. 
Therefore, the system described here is based on extracting well-discriminating 
characteristics of focused and unfocused signals and on a highly accurate classifier, 
trained using large numbers of examples of the two classes. In this paper, feature 
representations of signals are evaluated and highly accurate neural net classification 
strategies are developed to ensure an efficient automatic signal classification in FISH 
images. The system that implements the image processing and classification described 
here is written entirely in MATLAB, and the system has a graphical interface to permit 
use by a cytologist [7]. 

2  Image Acquisition 

FISH slides were prepared, hybridised and viewed according to [5]. A total of 400 RGB 
images were collected from five slides and stored in TIFF format; a typical image is 
shown in Fig 1. During the preparation of the sample (in this case amniotic fluid) three 
different fluorophores are combined: chromosomes 13 and 21 are indicated by green 
and red signals respectively, whereas the nuclei are indicated by blue. An image 
contains one or more large blue blobs (cell nuclei), and a number of small spots or dots 
called signals. Dots can indicate the presence of chromosomes, or may be the result of 
artefacts such as overlapping signals, background fluorescence and contaminants. 
 

 






  

Fig 1. Monochrome version of a typical FISH image showing two 
complete nuclei (arrows) each with a pair of signals indicating 
chromosomes 13 and 21. Regions outside the nuclei are artefacts and 
nuclei partly outside the image. The normally black background is here 
rendered white to improve clarity. 

 
Image acquisition is purely multichannel: each of the R, G, B channels is exposed 

separately, and there is negligible crosstalk between colour channels because the 
chromatic characteristics of the fluorophores are matched to the filters used during 
image capture. Therefore, nuclei can be segmented using the blue channel of the RGB 
image exclusively, whereas red and green regions can be segmented using the red and 
green channels, respectively. Multi-spectral FISH image analysis is better than the 
conventional monochrome-based analysis not only in facilitating pre-processing and 
segmentation, but also in yielding colour-based features that contribute to an efficient 
signal representation. To avoid the use of multiple features to distinguish individual 
colours, observe that signals of different fluorophores represented by the hue parameter 
of the HSI (hue, saturation, intensity) format can be easily resolved due to their 
different hues. Therefore, we use the RGB format for nucleus and signal pre-processing 
and segmentation and then characterise the signal hue using only the H channel of the 
HSI format. To convert RGB to HSI format, we follow standard methods such as given 
by Castleman [3]. 

Colour information is not used explicitly because in the FISH preparations there is 
no valid interpretation for colours other than R, G, B. For example, R and G dots can 
overlap owing to close proximity of chromosomes, possibly at different depths in the 
sample. Each of the overlapping signals can be determined from the R and G channel 
respectively; the yellow colour at the overlapped region is not informative about 
anything, apart from indicating that an overlap of signals has occurred.  

3  Signal Measurement and Feature Selection 

The first step is to find connected regions of pixels indicating the nucleus and signals.  
Each of the R, G, B channels is treated separately to find connected regions of pixels 
which define blobs for red signals, green signals and nuclei respectively. Because real 
signals have sharply rising edges, we use a global threshold of 90% of the maximum 
channel value for the criterion for including a pixel in a region. This unusually high 
threshold is effective at suppressing some artefacts such as background fluorescence, 
which are characterised by slowly varying channel values, while maintaining the 
integrity of signal boundaries.  

Following this, a discriminating and compact representation for the signals is 
derived by measuring a set of features for each region. The set analysed here uses eight 
features as shown in Table 1. We compute, at the colour plane corresponding to the 
type of region, five RGB intensity-based measurements: area, eccentricity, the total and 
average intensities and the intensity standard deviation. We also compute two hue-
based measurements: maximum and average hue. Finally, we measure the average 
intensity, essentially the monochrome brightness grey-level, which other colour image 
interpretation tasks [9] have favoured. This feature is similar to the projection of the 
image onto the eigenvector corresponding to the largest eigenvalue, but the 
requirements for its computation are negligible compared with those required in 
performing principal component analysis. 






  

 
 

 
Number Feature 
1 Area of region * 
2 Eccentricity of region * 
3 Total Intensity of region * 
4 Average intensity of region * 
5 Intensity standard deviation of region * 
6 Maximum Hue in region 
7 Average Hue in region 
8 Average Intensity (R+G+B)/3 of region 

 
Table 1. Features extracted from regions of FISH images. Features 
marked with * relate to the single RGB plane corresponding to the 
region (blue=nucleus, red=chromosome 21, green=chromosome 13). 

 
Once a sufficient set of features is measured, we can use each one or even all of them to 
classify signals into ‘reals’ (valid signals) and ‘artefacts’. However, the best single 
feature may not be sufficiently discriminating for an accurate classification, and 
classification based on whole or most of the set may be complex, costly to compute, and 
inaccurate. Moreover, some of the features can be found to contribute very little to the 
classification accuracy. Therefore, the purpose of feature selection is to select a (small) 
subset of the feature set that yields an accurate classification in minimal computational 
cost. In practical problems and for a not very large feature set, we can search among all 
the possible feature subsets and evaluate each one of them using a criterion of class 
separability.  The subset that achieves the highest value of the criterion is then selected 
to represent the patterns to the classifier. 

The criterion of separability that is considered here is based on the within-class 
scatter matrix (Fukunaga, 1990)  
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4  Signal Classification 

Signals are classified into four classes – ‘real red’, ‘artefact red’, ‘real green’ and 
‘artefact green’. Within the ‘artefact’ classes we expect to find mostly unfocused and 
overlap signals, and signals that are the result of background fluorescence. These 
signals will have patterns with different values of features than those of real signals, 
and hence will be classified as artefacts. 

Before performing the experiments, the features are normalized to zero mean and 
unit variance. Patterns are divided randomly into training and test sets and 
classification into one of the four classes is implemented using cross-validation. The 
classifier is a two-layer neural net trained by the scaled conjugate gradient algorithm 
[1]. A validation set which is drawn from the training set assures that the classifier is 
not over-trained. It also allows the selection of a minimal network configuration based 
on only a few hidden units. Both factors ensure rapid training and improved 
generalization. 

For the examples described in this paper, J1 was computed for all combinations of 
three features, using all data, and feature sets with the highest J1 values were used as 
input to various neural networks. In other work [5] we have chosen the optimal number 
of features automatically based on the probability of misclassification by the neural net. 

Two of the three classification strategies of [5] are examined here. In the Simple 
classifier, patterns are classified into the four classes using a single neural network. 
The Hierarchical classifier uses three networks. Patterns are first classified into red and 
green classes using the colour network and then based on the results of this network 
they are classified by two other networks into real signals and artefacts of the two 
colours. The two classifiers are shown in Figure 2. 
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Figure 2. (a) The Simple classifier uses a single network; (b) The 
Hierarchical classifier uses a network to distinguish colours and two 
networks for distinguishing real signals from artefacts. 

 






  

5  Experiments and Results 

We created a database of 400 FISH images, which were captured from five slides. 
Following nuclei segmentation, the system identified 944 objects within these images 
as nuclei, of which 613 also contained signals. Following signal segmentation, 3,144 
objects within the above nuclei were identified as potential signals and features were 
measured for them. Based on labels provided by expert inspection, 1,145 of the signals 
were considered as ‘reals’ (among them 551 were red) and 1,999 as ‘artefacts’ (among 
them 1,224 were red). 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

C
on

di
tio

na
l P

D
F

Average Hue

P (Average Hue|Red Real)
P (Average Hue|Red Artifact)

  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

10

20

30

40

50

60

Average Hue

A
re

a

Real Red
Artifact Red
Real Green
Artifact Green

 
 

(a) (b) 
Figure 3. (a) Histogram estimate of the one-dimensional pdf of the signal 
average hue for red signals.  (b) A scatter plot for the signal average hue and 
area. 

 
Features were first analysed visually using conditional probability density 

functions (pdfs) and scatter plots. Figure 3a shows an example of histogram estimate of 
one-dimensional conditional pdf of the average hue for red signals. The figure 
indicates moderate overlap between distributions of real signals and artefacts. Similar 
graphs derived for the other classes and features show different extents of overlap 
between distributions and demonstrate potential difficulty in classifying signals into 
reals and  artefacts of two colours based on a single feature. The example of the scatter 
plot in Figure 3b strengthens the role of the average hue in colour discrimination. 
Based on the complete visual analysis, it was found that among the eight features of 
Table 1, average channel intensity, maximum (or average) hue and average intensity 
R+G+B/3 each provided reasonable discrimination capability between the four classes. 

Before evaluating sets of features using the classification accuracy, we performed 
some experiments to find suitable configurations for each of the classification 
strategies. Input and output dimensions for each of the neural net classifiers are set by 
the feature space dimension and the number of classes, respectively. The number of 
hidden units is determined such that the network has the highest generalization 
capability. This is achieved by evaluating networks of different numbers of hidden 
units on an independent validation set drawn from the training set. The network which 
has the lowest error measured on the validation set is selected for training. Figure 4a 
shows an example of an experiment for determining the number of hidden units of the 
Simple classifier classifying signals represented by the area, average intensity and 
average hue (features 1, 4, 7 in Table 1, respectively). Finally, training of each of the 






  

networks was continued for 100 epochs and the results were averaged for each network 
over three random initializations using the cross-validation (CV-5) technique. 
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Figure 4.  Success rates of the Simple classifier for features 1, 4, 7 for increasing 
(a) numbers of hidden units and (b) sample size. 
 
 
We also examined the sensitivity of the success rate against the sample size by 

repeating the experiment for training sets of different sizes. The size of the training set 
is increased from 10% to 90% of the data, where the same unseen 10% of the data are 
used for the test. The results in Fig. 4b for the Simple classifier demonstrate that the 
success rate on the test set follows, as expected, the increase of the training sample size 
until its maximum level. However, the success rate on the training set has a minimum. 
The explanation is that for a very small sample size, training is very simple and 
classification of a few training patterns can be very accurate. It is more difficult to 
maintain this accuracy as the sample size increases and more variants of the training 
patterns are added. The success rate decreases until it reaches a minimum for a critical 
mass of learned patterns. After this point, as sample size continues to grow, the 
additional patterns are not so different from those of the critical mass. Thus, learning 
of the patterns of the (extended) critical mass is intensified, while at the same time the 
fraction of misclassified patterns becomes lower. The result of both trends is towards 
the improvement of the success rate on the training set as is shown in Fig. 4b. 

Finally, we evaluated feature sets chosen from the features of Table 1 using the 
classification accuracy and criterion J1. Each classifier, classifying signals represented 
by each of the feature sets, was checked using its own optimal configuration. The 
classifier configurations and accuracies for four feature sets are shown in Table 2. Here 
we see that unseen signals, represented by different combinations of features, can be 
classified as reals or artefacts of two colours with accuracies higher than 80%. In 
addition, the Hierarchical network is found to be a better classifier, even when inferior 
feature sets are employed. 

Since only eight features are included in this investigation, we can allow 
exhaustive search for the best (according to criterion J1) subset of, say three features. 
This search is done quickly since it involves the evaluation of only 56 subsets. Values 
for J1 and the corresponding ranks for the four feature sets are also given in Table 2. 
These results and similar experiments with other feature sets demonstrate that feature 
sets consisting of the area (1), average intensity (4), average hue (7) and the average 
intensity (8) provide the best representations for FISH signals. The experiments also 






  

show that hue-based features are crucial for separating signals of the two colours, while 
size and intensity-based features are essential for separating real signals from artefacts. 

 
 

Simple Neural Network Hierarchical Neural Network 
Features J1 Rank 

Hidden Training Testing Hidden Training Testing 
4, 7, 8 1.7543 1 7 79.0 78.2 3, 11 81.9 81.4 
4, 5, 6 1.6789 12 16 79.0 77.3 12, 7 82.4 81.3 
1, 4, 7 1.4958 10 15 84.3 83.0 1, 14 88.3 87.5 
1, 4, 8 0.4342 42 9 56.8 54.9 1, 4 89.5 89.0 

 
Table 2. Evaluation of feature combinations showing classification accuracy and 
criterion J1. Features are defined by their numbers in Table 1. The ‘Hidden’ column is 
the number of hidden units in the network. For the hierarchical network, the two 
hidden values are the number of hidden units for the colour and real networks, 
respectively (see Figure 2b). 

6  Discussion 

This paper has explored suitable feature representations and classification 
methodologies for FISH signal classification. A family of features, consisting of 
measurements of size, shape, intensity, texture and colour, has been evaluated by 
different criteria. Histogram estimates of probability density functions and scatter plots 
provide preliminary visual insight into the relative importance of different features for 
the classification process. Feature selection enables the choice of feature sets of any 
type and number, which maximizes a class separability criterion J1. The ultimate 
criterion for evaluating features for classification, however, is the probability of 
misclassification. Mismatches in selecting optimal feature sets according to the two 
criteria can be attributed to two factors: (a) the additional feature extraction stage 
performed by the hidden layer of each of the classifiers, and (b) the fact that J1 is based 
on the Euclidian metric. This metric is useful for discrimination purposes only when 
the class patterns have equal covariance matrices.  

Both the qualitative and quantitative analyses have demonstrated the superiority of 
size, hue and intensity-based features. When features of these families are combined 
together, even a single hue-based feature can completely separate signals of two 
fluorophores, leaving the task of discriminating real signals from artefacts to size and 
intensity-based features. Consequently, feature sets consisting of these features enable a 
hierarchical neural net based strategy to classify nearly 90% of the signals as reals or 
artefacts of two fluorophores. 
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