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Abstract

This paper presents a semi-automatic wireframe acquisition system. The sys-
tem uses real-time (25Hz) tracking of a user specified 2D wireframe and in-
termittent camera pose parameters to accumulate 3D position information.
The 2D tracking framework enables the application of model-based con-
straints in an intuitive way which interacts naturally with the Kalman filter
formulation used. In particular, this is used to introduce feedback from the
current 3D shape estimate to improve the robustness of the 2D tracking. The
scheme allows wireframe models of simple edge based objects to be built in
around 5 minutes.

1 Introduction

Computer vision can be used to obtain 3D models of objects for use in graphics, reverse
engineering and for applications such as model-based tracking. One method is to ac-
quire a dense set of depth measurements e.g. from optical flow and structure from motion
techniques, or laser range finding. However, many applications require more efficient
representations than a simple depth map. Hence, the data must be segmented e.g. into
planar or quadric surface patches [1], and constraints such as orthogonality imposed in the
high-level description [2]. Multi-view, feature based techniques overcome the problem of
segmentation by computing the depth of salient points only, thereby assuming a simple
underlying representation. Matching of points between images is typically achieved by
a feature extraction step, followed by application of geometric constraints. For example,
corner features might be extracted using the Harris corner detector, and the fundamental
matrix used for point matching between 2 views [3, 4]. Alternatively, edges might be
extracted using the Canny edge detector, and the trifocal tensor used for line matching be-
tween 3 views [5]. Snake tracking reduces the complexity of maintaining correspondence
by searching for edges in a local window [6]. Edges have the advantage that they can be
rapidly tracked, using multiple 1D searches (perpendicular to the edge), rather than using
2D search e.g. for corners. This approach is utilised in this work to allow frame rate
(25Hz) 2D tracking as a mechanism for preserving correspondence.

Previous approaches to model acquisition using tracking have used single line seg-
ments [7, 8]. This paper shows how nets of connected line segments – or2D wireframes,
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Figure 1: Typical operation of the model acquisition system – user input, tracking, recon-
struction

can incorporate high level user constraints to reduce the number of degrees of freedom
and hence improve tracking. Kalman filtering is used to accumulate 3D information from
observations made with noisy sensors, as described in [9]. This information is used in
a second Kalman filter, which accumulates 2D tracking information. In contrast to the
independent covariance matrices maintained for features in systems such as [7, 8, 10],
this filter uses afully covariantrepresentation. This allows the application of a rich set of
model-based constraints upon the tracking, utilising the 3D information.

A significant motivation for this work has been the production of models for model-
based tracking systems such as [11, 12]. These systems make use of 6 degree of freedom
Euclidean motion constraints to enable robust tracking in the presence of noise. The
‘model acquisition system’ presented here may be seen as a method for bootstrapping
model-based tracking, by combining it with model building.

2 Model Acquisition System

An example of typical system operation is shown in figure 1. A robot mounted camera,
with known internal parameters, provides video images of the object. The user specifies
the wireframe to be acquired via a point and click interface. The user then moves the
robot, after which it provides an update of the pose of the camera. The model acquisition
system tracks the object, and uses the sparse camera updates to accumulate 3D position
information. The system output is a 3D wireframe model of the object. In our case the
objects of interest are composed of straight line segments and may be represented by
straight line 3D wireframes.

A naive approach to this problem is to consider tracking and model building as sepa-
rate tasks, and we present this first. They are, in fact, very much intertwined – an improved
3D model enables improved tracking, which in turn improves the 3D model. By also al-
lowing user input in the loop, previously unseen parts of the model can be reconstructed.
This facilitates a framework for continuous building and tracking of 3D objects, boot-
strapping a 3D model from high level user constraints. This is described in the remainder
of the paper.

2.1 2D Wireframes

Object edges, which appear as intensity discontinuities in the video image, are used for
tracking. Edges have the advantage that they can be rapidly tracked, using multiple 1D
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Figure 2: A Rubics Cube example

searches (perpendicular to the edge), rather than using 2D search e.g. for corners. An-
other advantage is that many measurements can be made along an edge, allowing it to be
accurately localised.

A simple approach to object tracking is to use independent line segments. This has
the disadvantages that lines in the epipolar plane cannot be localised due to the aperture
problem, and that each new line segment adds 4 degrees of freedom. By connecting the
line segments to form a 2D wireframe, these problems are reduced. In addition to enabling
epipolar lines to be tracked, initialising the tracker as a 2D wireframe rather than a set of
line segments causes a significant reduction in the number of degrees of freedom. For
example, a Rubics cube from a general viewpoint has 63 visible edge segments and 36
visible vertices. Hence, a line segment representation has 63�4 = 252 degrees of freedom,
but a 2D wireframe representation has only 36�2 = 72 degrees of freedom (see figure 2)
– making tracking much easier.

2.2 Tracking

A simple approach to tracking is to use least squares – minimising the sum of the squared
edge measurements from the wireframe (see figure 3). To formulate this as a linear least
squares problem, the partial derivative of the edge measurements with respect to the vertex
image positions is computed. The linear change in measurementdi due to the change in
vertex image positionwj = (uj ; vj)

T is given by

Ædi = �
l

L
Æwj � bn

wj

di

n

L
l

Object and 2D
wireframe tracker

Measurements
made

Figure 3: Edge measurements
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Where l/L is the fractional distance of the measurement along the line, andbn is the unit
line normal. Hence

@di
@wj

= �
l

L
bn

Stacking the vertex image motionsÆwj into theP -dimensional vectorp, and the mea-
surements into theD-dimensional vectord0 we may write

d� d0 =Mp

whered is the new measurement vector due to the motionp, andM = @d
@p is theD � P

measurement matrix. In our experiments, the number of measurementsD is typically
100, and the number of wireframe verticesP=2 is typically 20. The overconstrained set of
linear equations is now solved by least squares, minimising the sum squared measurement
error jdj2. Note that in general the least squares solutionp is not unique, it can contain
arbitrary components in the right nullspace ofM, corresponding to displacements of the
vertex image positions which do not change the measurements. Regularising by adding
a small constant to the diagonal ofM prevents instability, ensuring that there is a small
measurement change for each direction inP space.

Note also that the least squares solutionp = �(MTM)�1MTd0 is equivalent to
a Maximum Likelihood estimate with the assumption thatd is drawn from a zero mean,
white Gaussian process. The likelihood probability density function (pdf) is a
P -dimensional Gaussian with meanml = �(MTM)�1MTd0 and covariance matrix
Cl =M

TM.

2.3 Model Building

Tracking the 2D wireframe preserves the correspondence of the vertices, whose 3D posi-
tion can be calculated from 2 views using simple triangulation. Observations from more
than 2 views can be combined by maintaining a 3D pdf for each vertexp(X). This is
updated on the basis of the tracked image position of the point, and the known camera.
New tracked image positions are calculated from the tracking step, and assumed to be
correct up to white Gaussian noise in the image plane.

A 3D pdf that corresponds to this 2D pdf has surfaces of constant probability defined
by rays through a circle in the image plane. We approximate this as a 3D Gaussian of
infinite variance in the direction of the ray through the image point, and equal, finite,
variances in the perpendicular plane (see figure 4). This is the likelihood of the tracked
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Figure 4: 3D pdf from observation
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point position, conditioned on the current 3D position estimate –p(wjX), expressed in
terms of 3D position with meanml and covariance matrixCl.

The 3D likelihood pdf is multiplied by the prior pdf to get the posterior pdf:

p(Xjw) =
p(wjX)p(X)

p(w)

SinceX is Gaussian with meanmp and covariance matrixCp, andwjX is Gaussian,
meanml, covariance matrixCl, Xjw is also Gaussian with meanm and covariance
matrixC, where

C�1 = C�1p +C�1l

C�1m = C�1p mp +C
�1

l ml

In the next iteration,p(Xjw) is used as an estimate forp(X), therefore

C�1n+1 = C�1n +C�1l

C�1n+1mn+1 = C�1n mn +C�1l ml

where n is the iteration number. These are the Kalman filter equations which are used to
maintain 3D pdfs for each point.

3 Tracking and Model Building Combined

The processes of tracking and model building are very much intertwined – a 3D model can
be used to improve tracking, which in turn provides an improved 3D model. Firstly we re-
view the technique of model-based tracking using 6 degree of freedom Euclidean motion
constraints. Secondly, we introduce a probabilistic framework that allows the weighted
application of model-based constraints to the 2D tracking, and integrates naturally with
the Kalman filter formulation.

3.1 Model-based 2D Tracking

A rigid body has 6 degrees of freedom corresponding to Euclidean position in space (3
translations and 3 rotations). A wireframe ofP=2 points has aP -dimensional vector
of image positions. The 6 degrees of freedom of Euclidean position correspond to a
6-dimensional manifold in thisP -dimensional space. This can be linearised about the
image position vector to give a 6D subspace of Euclidean motion. Projecting the image
motion vectorp onto this subspace constrains the image point motions to correspond to
Euclidean motion of the object (or camera).

For a normalised camera moving with velocityU and rotating with angular velocity
! about it’s optical centre, the velocity of an image point( _u; _v)T is given by

�
_u
_v

�
=

�
1

Zc

�
�1 0 u
0 �1 v

�
uv �(1 + u2) v

1 + v2 �uv �u

�
0
BBBBBB@

U1
U2
U3
!1
!2
!3

1
CCCCCCA
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whereZc is the depth in camera coordinates, and(u; v) are the image coordinates. Stack-
ing the image point velocities( _u; _v)T into theP -dimensional vector_p gives

_p =

2
4 v1 v2 v3 v4 v5 v6

3
5
0
BBBBBB@

U1
U2
U3
!1
!2
!3

1
CCCCCCA

The 6P -dimensional vectorsvi form a basis for the 6D subspace of Euclidean motions
in P space.

Model-based tracking by projection of the image point motion vectorp onto this
subspace gives great improvement when the model is good – converting aP degree of
freedom tracking problem into a 6 degree of freedom one. However, initially the accuracy
of the model, and hence the accuracy of the subspace of it’s Euclidean motion, is poor.
Therefore, it is not desirable to fully project to this subspace from the start. We would
like to accumulate 3D information from all of our observations, and progressively apply
stronger constraints as the quality of this information improves.

3.2 Probabilistic Framework for 2D Tracking

The weighted application of constraints to the 2D tracking is achieved using a second
Kalman filter. ThisP -dimensional filter takes inputsCl andml from the image measure-
ments (section 2.2), and uses a prior covariance matrix,Cp. Encoding the constraints in
this full, P � P prior covariance matrix enables the weighted application of a rich set of
model-based constraints.

A Euclidean motion constraint can be included by using a covariance matrix of the
form Cp =

P
i �

2
iviv

T
i . This comes from writingp as a weighted sum of Euclidean

motions,p =
P

i �ivi. Then, if�i are assumed to be independent,

Cp = E(ppT ) =
X
i

�2iviv
T
i

Qualitatively, this says that the variance of the image motion is large in the directions
corresponding to Euclidean motion, and 0 in all other directions. The weights�i can be
used to vary the strength of the constraints – increasing�i increases the weight of the
prior with respect to the likelihood.

Combining tracking and model building is intended to provide a smooth transition
between loosely constrained,P dof tracking, and highly constrained, 6 dof model-based
tracking. To do this we permit errors due to incorrect estimation of depth, weighted by
the uncertainty in the depth of the 3D point. From the image motion equations (section
3.1), only the component of image motion due to camera translation depends on depth.
Therefore, for a 1 standard deviation error in the inverse depth,� 1

Zc

, the image motions
are

�
_u
_v

�
= � 1

Zc

�
�1 0 u
0 �1 v

�0@ U1
U2
U3

1
A
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Figure 5: Church – real time tracking and 3D reconstruction

Stacking the image point velocities( _u; _v)T into theP -dimensional vector_p gives

_p =
X
j

�
e1j e2j e3j

�0@ U1
U2
U3

1
A

whereeij , i = 1; 2; 3 are theP -dimensional vectors for motion due to making a 1 s.d.
error in the estimate of the inverse depth of pointj. Writing p as a weighted sum of these
vectors,p =

P
i

P
j �ieij , and thereforeCp =

P
i

P
j

P
k �

2
i eije

T
ik. Neglecting terms

due to coupling between points givesCp =
P

i

P
j �

2
i eije

T
ij , which has the desired effect

of allowing variance proportional to�21
Zc j

in theeij directions. The depth variance for

each point can be computed from its 3D pdf by�Zc = utCu, whereu is a unit vector
along the optical axis andC is the 3D covariance matrix. Then, assuming that�Zc is
small compared toZc, � 1

Zc

�
�Zc
Z2
c

Hence, the final form of the prior covariance matrix is

Cp =

6X
i=1

�2iviv
T
i +

3X
i=1

P=2X
j=1

�2i eije
T
ij

This allows image motion due to Euclidean motion of the vertices in 3D, and also due to
errors in the depth estimation of these vertices.

4 Results

4.1 Reconstructed models

Figures 5 and 6 give examples of models acquired using the system. The left image
shows a frame from the tracking sequence, and the right image shows the reconstructed
model from a novel view. The ‘Church’ model of figure 5 was generated in about 3
minutes from 10 observations along single camera trajectory. The ‘ME’ block in figure
6 was built in 2 steps. Firstly, the ‘M’ face was tracked for a low level camera motion.
The 3D position information accumulated allowed this face to be robustly tracked as the
camera was moved to view the ‘E’ face. In the second step, the ‘E’ face was added. The
second camera motion used loosely constrained tracking of the new ‘E’ face, and tightly
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constrained tracking of the ‘M’ face. New 3D information for the ‘E’ face was generated,
whilst existing 3D information for the ‘M’ face was refined. This process took about 6
minutes.

Initial stability of the tracking proved to be a critical factor. For some objects, the
‘bootstrapping’ process could not get a foothold due to the inability to track small motions
correctly e.g. if the edges had insufficient contrast. Another cause of error were the
unwanted edges due to object texture and shadows. These caused tracking errors, which
led to the accumulation of incorrect 3D information. Robustness could be improved in
future by adding other user defined constraints into the 2D tracking framework, as we will
describe in section 5.

4.2 Accuracy of models

The ‘ME’ block of figure 6 was reconstructed using about 20 observations as described
above. To assess the accuracy of the model, the rms error in the angles and ratios of
lengths for the body of the block were computed:

angles: rms error = 2.30 degrees

ratios of length: rms error = 2.73 %

The coplanarity of the points in the ‘M’ and ‘E’ planes was also determined:

‘M’ plane: rms error = 0.85mm

‘E’ plane: rms error = 0.74mm

4.3 Convergence of models

Figures 7 and 8 illustrate propagation of 3D pdfs and evolution of model structure. The
ellipses in figure 7 are contours of constant probability density, at 100 standard deviations
from the mean. Figure 8 is side on compared to the views of figure 7. It shows the
structure of the model emerging from the initial planar hypothesis. Note that the pdfs
shrink as the model structure improves – causing stronger Euclidean motion constraints
in the tracking system.

To assess the rate of convergence, 40 observations were made as the camera was
moved at 5mm intervals over a 200mm baseline, approximately 600mm from the block
in figure 7. The rms error of the 3D position of the points was computed, and is plotted
against iteration number in figure 9.

5 Further Work

The 2D tracking framework described in section 3.2 is extensible to the application of
other model-based constraints. This can be achieved by incorporating additional full co-
variance matrices into the Kalman filter e.g.C�1 = C�1l +C�1p +C�1other. For example,
a plane to plane transformation has 8 dof. Hence,n (> 4) points in the image give2n� 8
constraints, which can be included as a rank2n� 8 matrixC�1other to provide a planarity
constraint.
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Figure 6: ME block – constructed in 2 stages exploiting weighted model-based tracking
constraints

(a) Iteration 2 (b) Iteration 5 (c) Iteration 20

Figure 7: Propagation of 3D pdfs – the ellipses are 100 standard deviations from the mean
vertex positions

(a) Iteration 2 (b) Iteration 5 (c) Iteration 20

Figure 8: Evolution of the model from initial planar hypothesis

Figure 9: Convergence of the model
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6 Conclusions

This paper has presented a semi-automatic wireframe acquisition system using real-time
(25Hz) tracking. To do this, a 2D tracking framework enabling the natural integration of
model-based constraints into the Kalman filter formulation was developed. The system
has been used to acquire 3D models of simple edge based objects in around 5 minutes.
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