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Abstract

Camera systems with zoom lenses are inherently more useful than those
with passive lenses due to their exibility and controllability. However,
their calibration raises several challenges. In this paper, we present a
neural framework for zoom-lens camera calibration that can capture
complex variations in the camera model parameters across continuous
ranges in the lens control space, while minimizing the calibration error
over all the calibration data. To automate the tedious process of col-
lecting calibration data, the calibration approach should be prepared
to handle possible outliers in the data. We demonstrate how the cal-
ibration approach can be robust and less sensitive to outliers. The
validity and performance of our approach are tested using both syn-
thetic data with outliers, and with real experiments to calibrate two
Hitachi CCD cameras with H10x11E Fujinon active lenses.

1 Introduction

The goal of machine vision is to understand the visible world by inferring 3D
properties from 2D images. Making such an inference requires modeling of the
relationship between the 2D images and the 3D world. Camera calibration is a
process which models this relationship. In this work, we report our approach to
calibrate zoom-lens cameras that are part of the CardEye, an active vision system
developed at our lab. The system has a trinocular head with basic mechanical
properties such as pan, tilt, roll, focus, zoom, aperture, vergence and baseline.
The system uses an active lighting device (a laser pattern generator with di�erent
di�ractor �lters), located at the center of the head, to assist in surface recon-
struction process and other tasks. The system makes use of the exibility and
controllability of the zoom-lens cameras to improve the performance of the system
in its tasks. To achieve this, the cameras should be calibrated across continuous
ranges of zoom and focus that cover the working space of the system. However, cal-
ibrating cameras with zoom-lenses is rather diÆcult and raises several challenges.
First, the dimensionality of data collected for calibration is large. A second chal-
lenge is the potential diÆculty in taking measurements across a wide range of
imaging conditions (e.g., defocus and magni�cation changes) that can occur over
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the range of zoom and focus control parameters.
The calibration problem of these cameras relies on formulating functions that

describe the relationships between the camera model parameters and the lens set-
tings. This is usually achieved by calibrating a conventional static camera model
(commonly the pinhole model) at a number of lens settings which span the lens
control space using traditional calibration techniques. The calibrated model pa-
rameters at each lens setting are then stored in lookup tables [2],[8], or polynomials
(or perhaps other functions) are formulated to model the parameters [9],[5],[4]. The
following remarks can be drawn on the previous approaches:

� using interpolation to obtain each model parameter at intermediate lens
settings in tables or �tting a function to each parameter independently em-
phasizes only the �tting error for this particular parameter at the expense of
of the overall calibration accuracy, which is completely ignored in this step.
This step, subsequently, does not consider the interaction between all the
model parameters to represent the underlying camera model.

� Polynomials, in many cases, fail to follow the complex variations in some
model parameters. Although other alternatives such as exponential func-
tions, Chebyshev polynomials and Legendre polynomials can be exploited,
the question about the optimal (or best) function type often remains diÆ-
cult to answer. Lookup tables have been previously used to get around this
problem.

To remedy the �rst point, an additional step of global optimization over all the
calibration data is carried out in [10], [9],[4] to re�ne the coeÆcients of �tted poly-
nomials. This step involves optimizing for each polynomial in turn until one (or
more) cycle is completed for all the parameters. However, as noted in [4], the
sequence of �tting the polynomials to the data a�ects the �nal calibration error.
Therefore, several experiments may be needed to reach a good sequence.

To calibrate the CardEye's zoom-lens cameras, we resort to proven power of
multi-layered feedforward neural networks (MLFNs) as universal approximators
[6] to provide suitable parameter formulation/�tting. This can take care of the
second point, but one still needs to consider the interaction between these MLFNs
in such way that minimizes the calibration error over all data. We have recently
[11] devised a solution by introducing the neurocalibration approach, which casts
the camera calibration problem into a learning problem of a MLFN. Therefore, we
propose to add the neurocalibration network to a number of MLFNs, thus building
an all-neural framework in which all the MLFNs learn concurrently, independently
and cooperatively, to capture the variations of model parameters across continu-
ous ranges of lens settings. This framework can provide handy solutions to the
previous two points.

In an addition to a brief description of our approach to zoom-lens calibration,
in this paper, we address another related problem. Collecting calibration data
that covers the working space of the system is rather tedious. So we are planning
to have the system collect the data by itself. This is can be accomplished by
using special markers embedded in the system working space. Moreover, we are
currently investigating the integration of the active lighting device with a range
�nder such that the two use the same laser beam. The integrated active device
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will have two modes: as pattern generator and as range �nder. Such a device is
useful in both surface reconstruction and getting data for calibration. Automating
the data collection phase makes the system easy to re-calibrate whenever neces-
sary. However, it may introduce outliers in the data due to poor localization of
the markers or the laser pattern in the captured images, or due to incorrect cor-
respondence between 3D points and their corresponding image pixels. It is worth
mentioning here that usually o�-line calibration is done under human supervision
and outliers are less likely to occur. That is why, to the best of our knowledge, we
are not aware of any previous calibration work that has dealt with outliers in the
data.

To cope with the new possibility of outlying calibration data, a robust approach
to calibration should be pursued; One bad outlier would skew the results of any
approach based on the widely-used least squares estimates. We therefore propose
to use the maximum likelihood estimator M-estimator [13] as a more robust esti-
mator.

The rest of the paper is organized as follows. We describe the camera model
and state the calibration problem in the next section. In Section 3, we briey
describe the neurocalibration network, followed by a more robust approach in Sec-
tion 4. A brief overview of the framework for zoom-lens calibration is given in
Section 5. Sections 6 and 7 describe our experiments and our concluding remarks.

2 Camera Calibration Problem

The result of camera calibration is an explicit transformation that maps a 3D
world point M = (X;Y; Z; 1)> into a 2D pixel m = (u; v; 1)>. This mapping
can be represented by a 3� 4 projection matrix, P, that encompasses 11 physical
parameters: rotation angles Rx, Ry and Rz , translations tx, ty and tz, the coordi-
nates of the principal point (u0; v0), two scale factors �u and �v , and the skewness
c between the image axes. This camera model thus ignores lens distortion which
is often accounted for in the camera model by adding some distortion parameters
[1]. However, these parameters can be estimated in the captured images by a pre-
calibration process [3],[7]. Then the images (or image features) can be undistorted
before calibration proceeds. The decoupling between distortion parameters from
the others will allow us to maintain the simple relation of the distortion-free model
thus making following vision tasks (e.g., stereo reconstruction) easier. Moreover,
the decoupling would reduce the e�ect of the correlation between lens distortion
coeÆcients and other camera model parameters [10] on parameter estimation. The
analysis and e�ects of this pre-calibration process are deferred to a follow-up work.

Given a suÆcient number, N , of reference world points, Mi, as well as their
corresponding pixel positions, mi, the camera calibration problem is to estimate
the 11 camera parameters or the projection matrix P, that minimize

E =

NX

i=1

k P Mi �mi k
2 : (1)

majid




3 Neurocalibration

In [11] we proposed a MLFN (see the central net in Fig. 1) that not only learns
perspective projection mapping of a camera, but also can specify explicitly the
calibration parameters. Here, we give a brief summary of our approach. The
interested reader can refer to [11],[15] for more details. The network tries to
minimize the calibration error in (1), which after some manipulation can be put
in the familiar form

E =

NX

i=1

3X

j=1

(dij �Oij)
2; (2)

where di = mi and Oi denotes network output vector. After training, the pro-
jection matrix can be computed from the network weights [11]. Moreover, the net
can explicitly solve for the camera model parameters after mapping each network
weight to one camera parameter by enforcing the orthogonality constraints on the
rotational part of the model during network learning [11].

Our extensive simulations and tests on practical images [11] yielded very low
calibration error and have shown that this neurocalibration approach has the fol-
lowing features:

� it relaxes the requirement of a good initial starting point, which is common
to other non-linear optimization techniques (e.g., Levenberg-Marquardt al-
gorithm). These techniques often fail without this condition. In all the
experiments conducted, the network has converged starting from random
initial weights without sacri�cing the calibration accuracy.

� experiments have shown very small sensitivity of the network learning to
network parameters, e.g., learning constants.

� the optimization procedure takes account of the structure of the orthonormal
rotation matrix without extra optimization steps (e.g., [1]).

� the technique is completely parallel thanks to its neural basis. Speedup can
be greatly achieved if implemented on parallel computers (or even onto VLSI
chips).

4 Robust Neurocalibration

Various machine vision algorithms found in literature optimize a least squares
criterion, which is optimum and reliable when the underlying noise in the data
is Gaussian. However, when outliers are present in the data, the Gaussian as-
sumption is violated and the least squares result is skewed. During the last three
decades, many robust techniques have been proposed [12],[13],[14] to handle out-
liers and these techniques have gained popularity in computer vision. Robust es-
timates include M-estimates (Maximum likelihood estimates), L-estimates (linear
combination of order statistics), R-estimates (estimates based on rank transfor-
mations) and LMedS estimates (Least Median Square). If ri denotes the residual
error of the i-th data item, M-estimators try to reduce the e�ect of outliers by
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minimizing another function of the residuals,
P

i �(ri), where � is a symmetric,
positive-de�nite function with a unique minimum at zero, and is chosen to be less
increasing than square. Many of such � function have been suggested [13],[14],
which yield breakdown points of about 1=p, where p is the number of unknowns
(p = 11 in case of camera calibration). M-estimators have high eÆciencies, typi-
cally 0:9 [14].
To robustify our calibration approach, instead of minimizing the error in (2), the
network will minimize

E =

NX

i=1

3X

j=1

�(dij �Oij): (3)

We have selected for the function � the redescending function suggested by Tukey
[14], which has provided better results as compared to other function such as Hu-
ber's function [13]. The new updating rules for networks weights are re-derived
according to the new error in (3).

It is important to note that M-estimate methods tend to be extremely suscepti-
ble to the initial solution to the non-linear optimization method. Most calibration
approaches found in the literature initialize a non-linear optimization algorithm
with the closed-form solution of a least squares linear approach. However, due to
outliers, the linear approach would not provide a reliable initial solution to the
non-linear optimization algorithm, which subsequently fails to yield any improve-
ment. Our neural approach does not su�er from this problem since it starts with
random initial weights.

After network training, one can make a good, robust estimate of the standard
deviation of the errors of good data (inliers). This estimate is related to the me-
dian of the absolute values of the residuals, �̂ [12]. Any data item whose whose
error is larger than a certain number (e.g. 2:5 � 3:0) of �̂ can be considered as
an outlier and removed. We are currently investigating another approach based
on LMedS estimates [12], which theoretically has the largest possible breakdown
point (0:5) but lower eÆciency and higher computational complexity.

5 Zoom-Lens Camera Calibration

In this section, we outline our framework for zoom lens calibration in the following
three steps.

5.1 Passive Camera Calibration

The calibration process starts with collecting the calibration data at a number of
di�erent lens optical settings (zoom, focus and/or aperture) covering the operating
space of the system. At each �xed lens setting, the �xed camera model param-
eters are estimated using the neurocalibration technique (any other calibration
technique may be used for this step). If data is likely to have outliers, the robust
neurocalibration technique is used, then outliers are identi�ed and thrown away.
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5.2 Initial Parameter Formulation

Having obtained the parameter values at the di�erent positions, we are ready to
�t functions to these values. The skew, c, is �xed to zero. For ease of use of
the camera model, excluding tz, the position and the orientation of the camera
coordinate frame relative to the world coordinates are kept unchanged as the lens
parameters are varied [4],[10]. Therefore, Rx, Ry, Rz , tx and ty are modeled with
constants (zero-order terms). Constraining these parameters to be independent
of optical settings makes use of the extra-degrees of freedom in the calibration
(i.e., the dependency and correlation between some camera parameters for small
variations [10]). The initial values for the former �ve terms are set to their average
values throughout the whole data. Then, for each of the remaining parameters,
�u; �v; u0; v0; and tz, a function is �tted across the optical settings using a MLFN.
The topology of each (from now on, parameter) MLFN is determined experimen-
tally independently from the others.

5.3 Global Optimization

The neurocalibration net has a central role in the global optimization step. The
�ve zero-order terms are represented by �ve network weights, while the �ve pa-
rameter MLFNs serve to provide the central network with the rest of the weights
representing the parameters that vary with the lens optical setting. Fig. 1 illus-
trates the central neurocalibration network and its associated MLFNs. The novel
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Figure 1: Global optimization step: �ve parameter MLFNs cooperate with the
central neurocalibration net during the optimization, � denotes the lens control-
lable optical parameters and dashed links in the central network designate link
weights �xed during learning at 0 or 1.

network of neural networks, shown in Fig. 1, presents a non-typical structure of
feedforward neural networks. We have developed an extended variant of the known
Backpropagation algorithm to train these networks minimizing the overall calibra-
tion error for all the collected calibration data. At each lens setting, the outputs of
the �ve parameter MLFNs provide the corresponding �ve model parameter values
to the central network, which uses these values along with its weights representing
the zero-order term parameters to project all the input vectors, to compute the
calibration error at this lens setting, and to update all its weights. Five of the
updated weights are propagated back to the parameter MLFNs to update their
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functional mapping between the parameters and the lens settings. Therefore, the
formulations of the parameters are updated in this step in a way that minimizes
the overall calibration error (this functions as an automated change and re�ne-
ment of the kernels or function types used for �tting). Note that each parameter
MLFN minimizes its own �tting error, which is di�erent from the calibration er-
ror computed by the central neurocalibration network. However, the �tting error
of each parameter MLFN a�ects the calibration error. While it is rather diÆ-
cult to prove it mathematically, the training process of all networks has indeed
converged to a small calibration error in all of our experiments. Each parameter
MLFN, then, will have the �nal functional relationship of that particular param-
eter versus lens settings while the central network will have the �nal values of the
zero-order term parameters. More details about the training algorithm and the
calibration approach can be found in [15].

6 Experimental Results

In this section, the performance of the robust calibration technique is tested with
synthetic data with outliers. Then a real experiment to calibrate the CardEye's
cameras is briey described.

6.1 Calibration from Synthetic Data with Outliers

Using a set of speci�c external and internal camera parameters, a set of 440 3D
points are projected to form a set of 2D points in an image of size 242 � 320.
Then, Gaussian noise with standard deviation 0:2 pixels is added to the 2D image
coordinates to represent the uncertainty in detecting these 2D points. A fraction,
�, of the 2D points is selected and replaced with points generated randomly from
uniform distribution that spans the whole image. Using the set of 2D points
with the introduced outliers and the set of 3D points, we have performed a series
of calibration experiments using di�erent �. Figure 2(a) shows the set of 2D
points at � = 5 and the obtained residual plot of the points after minimization
of the error in (3) using our network is depicted in Fig. 2(b). The points with
gross error correspond to the actual outliers in the data, and thus they can be
identi�ed and removed. For comparison sake, two other calibration techniques
have been tested: a linear calibration approach and a nonlinear technique that
starts with the solution of the linear approach minimizing the error in (1) using
the well-known Levenberg-Marquardt algorithm. For each approach, the obtained
projection matrix is used to project the 3D points. Then the rms error of the
deviations between the point projections and the correct ones is computed and
plotted against � in Fig. 2(c). Both the linear and Levenberg-Marquardt algorithm
minimize a least squares criterion and thus they are largely a�ected by outliers
in the data. The robust neurocalibration approach is less sensitive to outliers
and produces error within 2 pixels till about 12% outlier percentage, which is
around the theoretical upper bound of the breakpoint (9%). Fig. 2(d) shows
the performance of our approach in terms of the percentage of correctly identi�ed
outliers versus �.
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Figure 2: Robust calibration: (a) 2D points with 5% outliers (b) Residual plot
of error at � = 5, (c) rms of point errors in pixels for three approaches and (d)
Outlier identi�cation rate versus �.

6.2 Zoom-lens Calibration

In this section, due to space limitations, we briey describe the experiments con-
ducted to calibrate two Hitachi HP-M1 CCD cameras with H10x11E Fujinon ac-
tive lenses that are part of the CardEye system. More experiments and analysis
can be found in [15]. For the two cameras, calibration data collection was human-
supervised to easily quantify the performance of our approach, therefore no outliers
were present. For the operating range, we have chosen a normalized focus range
of 0:5 � mf < 1:0 and zoom range of 0:5 � mz < 1:0. We used a regular 7 � 7
sampling of the selected zoom and focus ranges. At each lens setting, an image
of a checkerboard calibration pattern was captured by the camera, thus a total of
49� 440 calibration points were obtained. The calibration approach, explained in
Section 5, was applied to the collected calibration data of each camera indepen-
dently.
For comparison sake, we applied Willson's approach [4] to the same collected cal-
ibration data (but using the camera model in Section 2 instead of Tsai's). In the
global optimization step using the Levenberg-Marquardt algorithm in Willson's
approach [4], the sequence of �tting the parameter polynomials to the data af-
fects the �nal calibration error. So a greedy algorithm was used to �nd the best
sequence. The rms of calibration error in pixels is shown in Table 1 for the two
cameras, computed over all data points, before and after the global optimization
step for the two methods.
Since we have not imposed on the calibration procedure the fact that the aspect

Camera 1 Camera 2
Approach Init Fin Init Fin
Willson's 5:41 1:82 6:21 1:30
Ours 2:53 0:12 1:88 0.14

Table 1: Comparison of the rms of calibration error in pixels before and after
global optimization between our proposed approach and Willson's.

ratio, �v=�u, should be nearly constant (from our earlier experience with these
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cameras, it is equal to 1) across the di�erent lens settings, we used this to assess
the results of our calibration. Our results, for both cameras, have shown an aspect
ratio of 1� 0:05 across zoom and focus calibrated ranges.

Moreover, since we often captured images of the same calibration patterns by
both cameras, one can compute for these images the rms of the error in 3D re-
construction of the calibration pattern. This will serve as a quantitative measure
of calibration accuracy. Table 2 shows this measure computed, using 20 images,
for the two approaches using the calibrated parameters before and after the global
optimization step. In fact, we have used this measure to validate the di�erent
parameter models and to circumvent over/under-�tting given the the size of the
available data. The third column shows the average run-time of the two approaches
on an SGI-Indigo2 machine. Although the neural approach takes longer time, time
can be greatly reduced if the approach is implemented in parallel. Moreover, this
type of calibration is done o�-line so accuracy not speed is the major issue. The
calibration accuracy can be further improved if the images are corrected for lens
distortion before calibration. Moreover, we can make use of more sampling po-
sitions (and thus more collected data size) to improve the accuracy. One can

Approach Initial Final Time (min.)
Willson's 2.65 0.91 6
Ours 1.41 0.32 16

Table 2: Rms of 3D reconstruction error in cm before and after global optimization.

conclude from Tables 1 and 2 the importance of the global optimization step to
decrease the calibration error and that our approach is more able to capture the
variations of the parameters across the lens settings.

7 Conclusions

We have presented a neural framework for zoom-lens camera calibration, which
makes use of our recently-introduced neurocalibration approach [11]. To automate
the tedious process of collecting calibration data, the calibration approach should
be able handle possible outliers in the data. We have demonstrated how our
approach can be robust and less sensitive to outliers. Our experimental results
have demonstrated better performance of our approach compared to Willson's
approach, which is a reference of this domain. To improve the accuracy of our
approach, more sampling positions during data collection are needed, along with
removal of lens distortion [3],[7] from images before calibration. These two goals
de�ne our future directions in this work. We believe that this approach has the
following key features, as opposed to other techniques (e.g., [9],[5],[4],[10]):

1. it is general; it can consider, in a straightforwardmanner, any number/combination
of lens control parameters, e.g., zoom, focus and/or aperture.

2. Since no a priori knowledge about how lens settings a�ect the model param-
eters can be assumed available, our framework is exible enough to capture
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complex variations in the model parameters across continuous ranges of con-
trol space.

3. it integrates parameter formulation with the minimization of the overall cal-
ibration error; the formulations for all model parameters are re�ned at the
same time, while in other approaches [9],[5],[4],[10], one parameter is �tted
at a time and the �nal level of error generally depends on the sequence in
which the models are �t to the data.
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