
Robust Point Correspondence by Concave
Minimization

João Maciel� and João Costeira
Instituto de Sistemas e Rob´otica – Instituto Superior T´ecnico

Av. Rovisco Pais, 1049-001 Lisboa Codex, PORTUGAL
fmaciel,jpc g@isr.ist.utl.pt

Abstract

We propose a new methodology for reliably solving the correspondenceprob-
lem between points of two or more images. This is a key step in most prob-
lems of Computer Vision and, so far, no general method exists to solve it.

Our methodology is able to handle most of the commonly used assump-
tions in a unique formulation, independent of the domain of application and
type of features. It performs correspondence and outlier rejection in a sin-
gle step, and achieves global optimality with feasible computation. Feature
selection and correspondence are first formulated as an integer optimization
problem. This is a blunt formulation, which considers the whole combinato-
rial space of possible point selections and correspondences. To find its global
optimal solution we build a concave objective function and relax the search
domain into its convex-hull. The special structure of this extended problem
assures its equivalence to the original one, but it can be optimally solved by
efficient algorithms that avoid combinatorial search.

1 Introduction

Estimating feature correspondences between two or more images is a long standing funda-
mental problem in Computer Vision. Most methods for 3D reconstruction, image align-
ment, object recognition or classification and camera self-calibration start by assuming
that image feature points were extracted and put to correspondence. This is, therefore, a
key problem and, so far, no general reliable method exists to solve it.

We propose a new methodology for reliably solving the point correspondence prob-
lem. There are three main difficulties associated with the problem. First, it is ill posed,
and there are no general constraints to reduce its ambiguity. Second, it suffers from high
complexity due to the huge dimensionality of the combinatorial search space. Finally the
existence of outliers must be considered, since features can be missing or added through
a sequence of images, due to occlusions and errors of the feature extraction procedure.

1.1 Previous Work

In order to deal with the ambiguity of the correspondence problem, all methods must
impose domain-specific assumptions. These assumptions define the objective function —
criterion — and the constraints of the optimization problem that is actually solved.
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The most commonly used criterion is image correlation [13, 6], which reflects the
assumption of image similarity. Another usual choice is proximity assumption [6]. The
most general assumption is 3D scene rigidity [1, 12]. The smoothness of the disparity
field is also used to disambiguate between multiple solutions [12, 9]. Examples of con-
straints are the order [9, 11], epipolar constraint [9, 11], and unicity [3]. Finally, the
large diversity of current methods comes mainly from the many different optimization
algorithms. Dynamic programming [9], graph search [11], and convex minimization [6]
guaranty optimality. Non-optimal approaches include greedy algorithms, simulated an-
nealing, relaxation [3], alternation of optimization and projection on the constraints [1]
and randomized search [12, 13].

Most methods use domain specific formulations that set bounds on their range of ap-
plications and, some times, create implicit unwanted constraints. For instance, the method
of [9] uses dynamic programming, which intrinsically assumes the order constraint. Fur-
thermore, algorithms that do not consider the existence of outliers have poor performances
when, for example, occlusions occur. Finally, most methods fail to guaranty global opti-
mality. For example, [13] deals with outliers but depends on an iterative scheme, which
is not proved to converge to the global solution.

2 Contribution

Our methodology is generic, in the sense that it is able to handle most of the commonly
used assumptions in a unique formulation. It performs correspondence and outlier rejec-
tion in a single step and achives global optimality with feasible computation. As far as we
know, no other method in the literature meets these three requirements simultaneously.

We use a single universal representation of the correspondence problem, indepen-
dently of the domain of application and type of features. Both problems of feature se-
lection and correspondence are formulated as a single integer optimization problem that
considers the whole space of possible point selections and correspondences. We find its
global solution avoiding combinatorial search without having to impose additional as-
sumptions. We do so by relaxing the discrete search domain into its convex-hull. The
special structure of the constraints and objective function assure that the extension gen-
erates an equivalent problem that can be optimally solved by efficient algorithms. By
default, one can use a generic optimization algorithm — e.g.simplex— but some combi-
nations of constraints and cost functions allow the use of even more efficient algorithms.

3 Methodology

For the sake of simplicity, we consider the two image correspondence problem. Extension
to full sequences is straightforward. In section 4.2 we show a three-image situation.

3.1 Correspondence as an optimization problem

Consider two sets of feature-points observed by a stereo pair or by a moving camera.
Consider that some of these pairs are the projections of the same 3D points. We collect the
features of the first and second images, in two stacks of row vectors, respectivelyX and
Y. Features can represent the image coordinates of feature-points or any image-related






quantity like a local neighborhood of intensities. The type of information conveyed by
the features has to be coherent with the criterion, but does not affect our formulation.

Using the previous definitions we can formulate the correspondence problem as an
integer minimization problemP� = arg minP J(X;Y;P), whereP is a zero-one vari-
able that selects and sorts some rows ofY, putting them to correspondence with the rows
ofX. To guaranty robustness in the presence of outliers,P must allow some features not
to be corresponded, so it cannot be a simple permutation. To avoid combinatorial explo-
sion, we must be able to extend the zero-one domain. This results on the minimization
problem 1 whereJ is a scalar objective function.

Problem 1 P� = arg min
P

J(X;Y;P)

s.t. P 2 Pp(p1; p2)

In this problem,P is constrained toPp(p1; p2), the set ofp1 � p2 partial permutation
matrices(pp-matrices). A pp-matrix is a permutation matrix to which some columns and
rows of zeros were added. Each entryPi;j when set to1 indicates that featuresXi� (row
i ofX) andYj� (row j ofY) are put to correspondence.

pp-matrices represent, at most, one correspondence for each feature, and allow some
features not to be matched. If rowPi� is a row of zeros then featureXi� is not matched.
If columnP�j is a column of zeros then featureYj� is not matched. Both correspondence
and outlier rejection are intrinsic to this formulation because each element ofPp(p1; p2)
permutes only a subset of all the features. The global optimal solution of problem 1 is the
best among all possible combinations of samples and permutations.

We generalize the usual definition of pp-matrices to non-square matrices, saying that
anyp1 � p2 real matrixP is a pp-matrix iff it complies with the following conditions:

Pi;j 2 f0; 1g ; 8i = 1 : : : p1 ; 8j = 1 : : : p2 (1)Pp1
i=1Pi;j � 1 ; 8j = 1 : : : p2 (2)Pp2
j=1Pi;j � 1 ; 8i = 1 : : : p1 (3)

To avoid the trivial solutionP� = 0, we establish a fixed number of correspondences
pt � min(p1; p2) by considering a slightly different set of matricesPpt

p (p1; p2). We
call theserank-pt partial permutation matrices(rank-pt pp-matrices). Constraining the
optimization problem toPpt

p (p1; p2) leads to a process of picking up just the bestpt cor-
respondences. Like in most robust methods [13],pt should be kept near the minimum
number of features required by the assumed model or lower than the estimated number of
inliers. The definitions and properties ofPpt

p (p1; p2) and other useful sets of matrices can
be found in [8].

3.2 Reformulation with a compact convex domain

Problem 1 is a bluntly posed — brute force — integer minimization problem. In general,
there is no efficient way to optimally solve such type of problems. Nonetheless there is
a related class of optimization problems for which there are efficient, optimal algorithms.
Such a class can be defined as Problem 2.

Problem 2 P� = arg min
Q

J�(X;QY)

s.t. Q 2 DSs(p1; p2)






Figure 1: Efficient solution of the combinatorial problem.

whereJ� is a concave version ofJ — Equation 4 — andDSs(p1; p2) is the set of real
p1 � p2 doubly sub-stochastic matrices, the convex hull ofPp(p1; p2).

Problems 1 and 2 can be made equivalent — same global optimal — by finding an ade-
quate concave objective functionJ�. Also we must be sure that the vertices ofDSs(p1; p2)
are the elements ofPp(p1; p2). Figure 1 summarizes the whole process. In short, the
methodology is outlined as follows:

1. Extract points of interest and use their representations to buildX andY.

2. UseX andY to build the objective functionJ . Examples are Equations 10 and 13.

3. Use the procedure in Section 3.3 to produce an equivalent concave objective func-
tion J� — Equations 4 and 5.

4. Convert the desired convex constraints into the canonical form using Equations 7 and 8.

5. Solve the problem using a linear or concave programming algorithm.

Section 3.3 contains the proof for the equivalence of Problems 1 and 2. Extensions for
the inclusion of other constraints can be found in [8].

3.3 Equivalence of the Problems 1 and 2.

Theorem 1 states the fundamental reason for the equivalence. [5] contains its proof.

Theorem 1 A strictly concave functionJ : C ! IR attains its global minimum over a
compact convex setC � IRn at an extreme point ofC.

The constraining set of a minimization problem with concave objective function can be
changed to its convex-hull, provided that all the points in the original set are extreme
points of the new compact set.

The problem now is how to find a concave functionJ� : DSs(p1; p2) ! IR hav-
ing the same values asJ at every point ofPp(p1; p2). Furthermore, we must be sure
that the convex-hull ofPp(p1; p2) isDSs(p1; p2), and that all pp-matrices are vertices of
DSs(p1; p2), even in the presence of the rank-fixing constraint.

Consider Problem 1, whereJ(q) is a classC2 scalar function. Each entry of its
Hessian is a continuous functionHij(q). J can be changed to its concave versionJ� by

J�(q) = J(q) +
Pn

i=1 �iq
2
i �

Pn

i=1 �iqi (4)






Note that the constraints of Problem 1 includeqi 2 f0; 1g; 8i, soJ�(q) = J(q); 8q. On
the other handPp(p1; p2) is bounded by a hypercubeB = fq 2 IRn : 0 � qi � 1; 8ig.
All Hij(q) are continuous functions so they are bounded forq 2 B — Weierstrass’
theorem. This means that we can always choose a set of finite values�r, defined by

�r � � 1
2

�
maxq

Pn
s=1;s 6=r

��� @2J(q)@qr@qs

����minq
@2J
@q2r

�
(5)

which impose a negative stricly dominant diagonal to the Hessian ofJ�, that is to say,
jHiij >

Pn
j=1;j 6=i jHij j ; 8i. A strictly diagonally dominant matrix having only neg-

ative elements on its diagonal is strictly negative definite [4], so these values of�r will
guaranty thatJ�(q) is concave forq 2 B and, therefore, also forq 2 DSs(p1; p2).

Finally, note that problem 2 is constrained to the set of doubly sub-stochastic matrices,
defined by conditions 2, 3 and 6

Qi;j � 0 ; 8i = 1 : : : p1 ; 8j = 1 : : : p2 (6)

This set has the structure of a compact convex set inIRp1�p2 . Its extreme points are
the elements ofPp(p1; p2) — see [8]. This fact together with Theorem 1 proves that
the continuous Problem 2 is equivalent to the original discrete Problem 1, since we’re
assuming thatJ� was conveniently made concave. If we use theP

pt
p (p1; p2) set instead

then its compact extension isDSpt
s (p1; p2), the set ofrank-pt dss-matrices— see [8].

3.4 Constraints in canonical form

Most concave and linear programming algorithms assume that the problems have their
constraints in canonical form. We now show how to put the constraints that define
DSs(p1; p2) in canonical form, that is, how to state Problem 2 as

Problem 3 P� = arg min
q

J�(X;Y;q)

s.t. Aq � b ; q � 0

whereA[m�n] andb[m�1] define the intersection ofm left half-planes inIRn.
The natural layout for our variables is a matrixQ, so we useq = vec(Q), where

vec() stacks the columns of its operand into a column vector. Condition 2 is equivalent
toQ:1[p2�1] � 1[p1�1]. Applying the vec operator [7] to both sides of this inequality we

obtain
�
1>[1�p2]


 I[p1]

�
q � 1[p1�1], where
 is the Kronecker product, so set

A1 = 1>[1�p2]

 I[p1] ; b1 = 1[p1�1] (7)

By the same token we express condition 3 as

A2 = I[p2] 
 1
>
[1�p1]

; b2 = 1[p2�1] (8)

The intersection of conditions 2 and 3 results on the constraints of Problem 3 with

A =

�
A1

A2

�
; b =

�
b1
b2

�
(9)

Similar conditions can be found forDSpt
s (p1; p2) and other useful sets.






3.5 Minimizing a linearly constrained concave function

To solve linear problems we use the thelpSolve1 implementation of thesimplexalgo-
rithm. For concave problems we use an extension of the exact method of [2]. Other exact
methods provide more efficient procedures [5, 10] but this one is simple and easy to im-
plement. Like thesimplexalgorithm, worst case complexity is factorial, but typically it
visits only a small fraction of the vertices of the constraints. It performs surprisingly well
in concave quadratic problems.

The method is based on a very simple iterative scheme. In each iteration thenext
bestsolution of a linear program is computed [14]. This can be accomplished by a few
simplexpivoting steps. As iterations run, a sequence of ever-improving vertices of the
constraining polytope is return, as well as a sequence of tighter and tighter bounds on
the global minimum. Global optimality is tested by checking for coherence between the
current best solution and the bounds.

Note that these are general-purpose algorithms, which solve the problems for any kind
of constraints. If efficiency is an issue, then specialized algorithms should be used, wich
have lower algorithmic complexity but will only work for a particular set of constraints.
Examples are dynamic-programming [9] and graph-matching [11].

4 Experiments

In this section we will consider two of the most frequently used assumptions and insert
them in the described framework. The resulting methods are tested in real images and
their robustness is compared with benchmark algorithms.

4.1 Correlation matching by linear programming

Matching by correlation of image patches requires the solution of emerging ambiguities
and outlier rejection. Our formulation solves both in a natural way. To use this criterion,
features consist of image patches withN pixels centered around the previously segmented
points of interest. Rowi of X (andY) is the row vectorization of a patch around theith
feature-point of the first (and second) image. The sum of the correlation coefficients
of the rows ofX andY is given by the matrix inner product of̂X and Ŷ, which are
normalized to have zero mean and unit norm rows. So, the objective function isJ1(Q) =

�tr
�
QŶX̂>

�
. Using algebraic properties of the trace operator [7]

J1(q) = �c>1 q (10)

c1 = vec
�
X̂Ŷ>

�
which is linear inq = vec(Q). Problem 3 can be solved bysimplexalgorithm.

4.1.1 Results

We compared the results of our method with those of two benchmark algorithms. The first
algorithm solves the same problem with the same constraints using a greedy suboptimal
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Figure 2: Average number of incorrect matches found in40 trials for each noise level.

approach. The second benchmark improves the results of the first one by using a random
sampling validation algorithm described in [13], that uses an extra rigidity assumption.
This is known to achieve very reliable results. This algorithm randomly chooses sets of
only a few of the feature pairs to estimate the Fundamental matrix, and keeps the solution
with smallest median of the feature to epipolar distances. It then selects correspondences
consistent with this Fundamental matrix. The number of iterations was set to200.

We selected some image pairs with large disparity from theKitchensequence2 and
built three sets of corrupted data. The first set consisted of images with added zero-mean
gaussian noise. In the second set, images were corrupted with salt-and-pepper noise. In
the last set, outlier features — with randomly generated coordinates — were added to the
extracted features, and all the images were corrupted with zero mean gaussian noise. We
measured the number of incorrect matches returned by the three algorithms. The results
are summarized on Figure 2.

4.1.2 Discussion

The greedy solution consistently produced higher number of mismatches, so we conclude
that assuring optimality is a key factor on the reduction of the number of mismatches.

For the first two data sets, the random sampling algorithm returns the same percentage
of mismatches of our method. When outliers are present, our method performs better.
This is mainly because the validation procedure also rejects many good matches, which
tends to raise the percentage of wrong matches.

The simultaneous rejection and correspondence of features is a reliable strategy, even
in the presence of as much as70% of outliers in data. The linear problems were solved in
a fraction of a second by asimplexalgorithm running on a166MHz Pentium processor.
In the case of40 features plus40 outliers, the cardinality ofPp(p1; p2) is roughly1070.
Exhaustive search would be impractical, while thesimplexalgorithm visits less than300
solutions.

4.2 Epipolar search by quadratic concave minimization

Consider a trinocular system in generic configuration — focal points are not collinear —
from which we known all Fundamental Matrices. Figure 3 shows the notation. Matrices

2Data was provided by the Modeling by Videotaping group in the Robotics Institute, CMU.






Figure 3: Notation for a trinocular system.

P1;2 andP1;3 are the variables of our problem. Each known Fundamental matrixFk;l

definespl epipolar linesLm
k;l ;m = 1; : : : ; pl on imagek. A point on imagek corre-

sponding to them-th point on imagel must lieclose3 to Lm
k;l. This defines a constraint

that we represent by an indicator matrixSk;l. If entry (i; j) of Sk;l is set to0, then entry
(i; j) of Pk;l permanently set to0. On the other hand, entry(i; j) of Sk;l is set to1 if the
i-th point on imagek is close toLj

k;l. This means that entry(i; j) of Pk;l is a variable.
We represent these constraints implicitly with asqueezedset of variablespc

k;l of di-
mensionnk;l. These do not include the entries ofPk;l fixed to 0. We recover the full
matrices through vec(Pk;l) = Bk;l p

c
k;l, so the sub-stochastic constraints become"

1>[1�pk]

 I[pl]

I[pk ] 
 1
>
[1�pl]

#
Bk;l p

c
k;l � 1[1�nk;l] (11)

We close the loop by estimating thecompound correspondencêP2;3 = P>
1;2P1;3 and

checking its coherence withS2;3. The objective function is

J2 =

p1X
i=1

p2X
j=1

�
P1;2 �D1;2 +P1;3 �D1;3 + P̂2;3 �D2;3 + P̂2;3 � �S2;3

�
i;j

(12)

where� is the elementwise product,�S2;3 =
�
1[p2�p3] � S2;3

�
, andDk;l(i; j) is a matrix

with the distances between the pointsi = 1; : : : ; pk of imagek and the epipolar linesLj
k;l.

The lack of coherence between̂P2;3 andS2;3 is penalized by the last term. The other
terms are the sum of all point-to-epipolar distances. These will disambiguate between
different compatible solutions. By algebraic manipulation, we get the objective function

J2 (p) = p>J2p+ c>2 p (13)

written in a complete vector of variablesp =

�
pc
1;2

pc
1;3

�
, and with

J2 = B>
1;2

��
D2;3 + �S2;3

�

 I[p1]

�
B1;3

c2 =

�
B>

1;2 vec(D1;2)

B>
1;3 vec(D1;3)

�

Note thatJ2 is, in general, not concave, so a concave versionJ� must be computed using
Equations 4 and 5, before the minimization algorithm is applied.

3define a distance threshold or choose a few from the nearest






Figure 4: Three images from theCastlesequence, and some of the epipolar lines.

Figure 5: Graphical representation of the obtainedP1;2 andP1;3.

4.2.1 Results

We applied the described method to the images of Figure 4, which are details taken from
theCastlesequence4. The white lines are epipolar lines corresponding to a few points of
the first image. The white dots are edge points from the Canny edge extractor. The feature
points — crosses in black — come from inside a manually defined rectangular region of
interest. They were automatically chosen from the set of edges by a bucketing procedure
to guaranty a minimum distance between them. At the end we obtained50 points from the
first image and130 points from each of the other images. Note that the second and third
images contain, at least,80 outliers, so the problem is solved in the presence of roughly
60% of outliers in the data. We fixed the number of computed correspondences by setting
pt = 30, and obtained the correspondences in Figure 5.

4.2.2 Discussion

We detected3 mismatches inP1;2 and2 mismatches inP1;3, corresponding to8% errors.
The algorithm stopped after less than100 iterations, when the bounds — Section 3.5 —
were closer than a fixed threshold, so the depicted solution is not optimal. We set this
threshold to admit only solutions without violations of the epipolar constraints, though
mismatches can occur when more than one point is within the lozenge defined by the
crossing of two epipolar lines. The mismatches occour because the first three terms of the
objective function — Equation 12 — are unable to correctly disambiguate these situations,
so the introduction of other assumptions would result on a better performance.

4Data was provided by the Calibrated Imaging Laboratory at CMU.






5 Conclusion

We have shown a methodology to solve the correspondence problem, which avoids un-
wanted assumptions by requiring their explicit statement. Furthermore it reliably handles
outliers, even in situations where other robust methods fail.

The most important limitation of the methodology is the dimensionality of the opti-
mization problems, specially when the objective functions are high-order polynomials. A
practical way of minimizing this is the selection of a small number of reliable features
in one of the images. Ongoing work is being conducted on the implementation of an
efficient algorithm for high-order polynomial problems, and dealing with the assumption
of rigidity under various camera models — see [8]. We plan to extend the methodology
to dealing with extended sequences of images. Also we are working on reducing the
dimensionality of the problem by integration of more than one assumption.
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