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Abstract

A new object recognition method, the Invariant Pixel Set Signature (IPSS),
is introduced. Objects are represented with a probability density on the space
of invariants computed from measurements (pixel values) inside convex hulls
of n-tuples of interest points. Experimentally the method is tested on COIL–
20, a publicly available database of 72 views of 20 natural object rotating on
a turntable. With a model built froma single view, recognition performance
measured by the average match percentile is above98% for�20 degrees and
above96% for�30 degrees. For some object, 100% first rank is achieved for
all 72 views. Robustness to occlusion is shown using images with one half
covered. For a small change of viewpoint (�10 degrees) recognition of the
occluded object is perfect.

1 Introduction

In this paper a novel appearance-based object recognition (ABOR) method is proposed.
Appearance-based (or view-based) methods, i.e. approaches that represent objects by de-
scriptors computed from images without building an explicit model of 3D shape, have
a number of attractive features. Firstly, object models are built by generalisation from
observed views, using statistical learning techniques. Model acquisition is therefore au-
tomatic, time-consuming (manual) model-building is avoided. Secondly, appearance de-
pends on the generally complex interaction of object shape, surface reflectance, illumina-
tion and observer’s viewpoint. Building realistic models of the combined effect, the main
focus of computer graphics, is extremely complex and therefore costly. If a sufficiently
rich set of input images is presented in the training phase, the model of appearance will
represent, albeit approximately, the combined effects. Finally, many real-life objects have
an irregular shape and thus cannot be successfully recognised in the ’classical’ framework
based on geometrical primitives.

It may seem surprising that a collection of 2D views of a complex 3D object holds
enough information for view-point and illumination independent recognition of the ob-
ject. However, both psychophysical evidence [5] and theoretical considerations support
the hypothesis [17]. On the experimental side, impressive performance of recognition al-
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gorithms based on the principle supports the view that a 3D model is indeed not necessary
for general recognition [19].

No approach to the complex problem of object recognition should be viewed as a
panacea and, naturally, there are certain limitations of the applicability of the appearance
based method. Since ABOR is based on direct matching of images, resistance to clutter
and occlusion is not easily incorporated in the framework and hence prior segmentation
of the object of interest is often required. For the same reason global ABOR methods
cannot handle substantial amounts of occlusion1. Standard ABOR methods require a large
training set [18, 19]. If a scaled orthographic transformation is assumed, a set of images
taken from points uniformly sampling the view-sphere is sufficient for representing all
possible appearances of the object. In similar conditions, it has been shown by Murase and
Nayar [11] that real-time recognition in a database of 100 objects is possible. However,
if affine or perspective effects are non-negligible, the memory requirement renders direct
image-based methods impractical.

Another fundamental aspect of the large training set problem has been neglected in
the literature. If the designer of the recognition system is in full control of the objects of
interest, e.g. in a conveyer-belt type of applications, automatic acquisition requires only
time, suitable hardware and a learning procedure. However, in many applications only
a very limited number of images of the object are available, the illumination and other
environmental parameters are beyond control (outdoor scenes) or it is not acceptable to
submit the object to a time-consuming acquisition procedure (e.g. face recognition).

The proposedInvariant Pixel Set Signature Method (IPSS)overcomes two important
problems of ABOR, namely robustness to occlusion and the need for a large training set,
by merging geometric and appearance-based techniques. Since perspective (and therefore
affine and orthographic) projection preserves convex hulls [21, 22],invariant appearance-
based descriptors can be computed on pixel set corresponding to convex hulls of n-tuples
of interest points.

The rest of the paper describes the IPSS method in detail and present a set of initial
experiments. In section 3, the invariant pixel-set signature representation of appearance is
introduced. An object recognition strategy based on the selection of object with maximum
aposteriori probability given an observed signature is proposed in section 3. Recognition
experiments presented in section 4 experimentally confirm that the signature is robust w.r.t
change of pose and occlusion. Test are carried out on a publicly available database of 72
views of 20 natural objects. The paper is brought to conclusion in section 5.

2 The Invariant Pixel-Set Signature (IPSS)
Representation

“Where in the image should appearance representation of the object be computed?”, is a
central problem of ABOR. “Everywhere”, the standard answer of the global approaches,
is not robust to occlusion and we do not consider it. Local methods exploiting features
computed in neighbourhoods of interest points have been propsed. E.g. Schmid [2] used
differential invariants computed from a set of circular neigbourhoods, Lowe[8] proposed
a complex multi-scale representation. Such methods work well under orthographic pro-
jection since the shape of the neighbourhood where invariants are computed stays the

1but c.f. the work of Leonardis and Bischof [7, 6]






Figure 1: Objects in COIL20 databases with detected intersted points and intensity pro-
files used for IPSS computation

Figure 2: Example of appearance variations of objects in the COIL20 database.






same. However, under affine and perspective transformations, the neighbourhood gets
distorted. For example, a circle can become an ellipse. “Invariants” computed from a
circular neighbourhood, distorted by the transformation to an extended ellipse, are not
invariant at all.

Research into projective invariants has shown that perspective (and therefore affine
and orthographic) projection preserves convex hulls [21, 22]. So our answer to the cen-
tral, “where”, question is:compute the appearance-based description using pixel values
(measurements) from regions defined as convex hulls of the n-tuples of interest points. The
descriptors computed from the pixels inside the convex hulls form theInvariant Pixel Set
Signatures. Under the assumption of local planarity, the appearance based descriptions is
a function ofimage data corresponding to the same surface patch in the scene, which is
a necessary pre-requisite for a representation to be invariant. These descriptors could be
based on differential invariants, affine-invariant moments, or any of the invariant features
proposed in the literature [16, 14, 9].

The computation of the IPSS representation can be summarised as follows:

Algorithm 1: Computing the IPSS

1. Interest point detection (e. g. Harris corner detector).

2. Generation of convex sets (e. g. line segments).

3. Computation of invariants (e. g. normalised intensity profile)

For recognition, the interest points must be stable w.r.t. geometric transformations.
We chose the modified Harris corner operator [4] since it outperformed five other detec-
tors evaluated by Schmid et al. [3]. The Harris corner detector is by no means the only
possibility; many local operator have been proposed in the literature, e.g. [20, 13]. Ex-
amples of interest points detected on models used in experiments described in Section 4
are shown in Fig.1.

The use of n-tuples has a drawback, namely the potential for combinatorial explosion,
since if there areNi interest points in the image,

�
Ni

n

�
n-tuples (regions) can be formed.

In order to keep the problem under control, we use only pairs of points (defining line
segments) and keep only interest points, that show very high stability with respect to scale
and rotation change of the image. From these stable interest points, object descriptor is
computed in terms of intensity profiles along a set of line segments. The number of
profiles is further reduced by considering only profiles between the interest point and its
k nearest neighbourghs2. The total number of profiles forming the signature is thusk�Np,
whereNp is the number of detected interest points. The selected profiles are shonw in
Fig1.

3 MAP Recogniton of IPSS

In the IPSS method, objects are represented by collections (multi–sets) of descriptors
S = fs1; s2; : : : ; sng, wheresi is a descritor computed from an invariant pixels seti. We

2W are aware the the k-nearest neighbour relation is not affine invariant, but, for many configurations it is
stable. The issue of selection of an affine invariant subset of profiles is an ongoing research issue.






assume the following probabilstic model of the relationship between modelM and the
observed signatureS.

P (SjM) = P (fs1; s2 : : : ; sngjM) =
Y

P (sijM)P (njM) (1)

The termP (njM) gives the probability thatn invariant sets will form modelM . We
assume that the components of the signatureS are independent and identically distributed.
The i.i.d. assumption expressed by eq. (1) is of course a gross simplification and its
usefulness must checked by experimentation. In case of no occlusion,P (njM) provides
information aboutM . However, sinceP (njM) it is strongly influenced by occlusion, we
chose not to exploit it (equivalent to the assumption that under occlusionP (njMi) is a
constant).

An maximum aposteriori probability approach to recognition is adopted (another match-
ing strategy for IPSS were explored in [10]). To computeargmaxi P (MijS), Bayes theo-
rem is used to obtainP (Mijs). Flat priors are assumed for prior probabilites of observing
a given objectP (Mi). The probability density functionsP (sijM) in the intensity profile
space are estimated using a kernel-based technique. The estimate of a true multivariate
density functionf(�x) at a point�x0 in ad-dimensional data space is given by

f̂(�x0) =
1

nhd

nX
i=1

KE

�
�xi � �x0

h

�
(2)

where�xi; i = 1::n are the sample data points andKE is the Epanechnikov kernel with
width h. The kernel was chosen since it has minimum integrated square error [1]. The
Epanechnikov kernal is defined as

KE(�x) =

�
1

2
c�1d (d+ 2)(1� �xT �x) if �xT �x < 1

0 otherwise
(3)

wherecd is the volume of the unit d-dimensional sphere and�x are the data points.
The recognition strategy can be summarised as follows:

Algorithm 2: MAP Recongnition using IPSS

1. Compute the IPSS representation for model imagesSi.

2. Compute the IPSS representation for test imageSt.

3. ComputeP (MijSt) �
Q

j P (Mijs
t
j), P (Mijs

t
j) are estimated by evaluating eq.

(2) atstj using descriptors inSi.

4. Select the modelMi? : i
? = argmaxiP (MijSt).

In practice, negative logarithms ofP (M js) are used and the product is replaced by a sum.

4 Experiments

Recognition performance of the IPSS method is demonstrated in three experiments using
data from the COIL–20 database [12]. The medium-size database is publicly available






Percentage of ranks Histogram of ranks
Angle � 1 � 2 � 3 � 4 1 2 3 � 4 Average match percentage
+30 85 95 100 100 17 2 1 0 98.95
+20 90 95 95 100 18 1 1 0 99.21
+10 95 100 100 100 19 1 0 0 99.74
-10 95 95 95 100 19 0 0 1 99.21
-20 80 90 95 95 16 2 1 1 98.16
-30 60 90 90 95 12 6 0 2 96.84

Table 1: Ranks for basic experiment with database COIL20.

Percentage of ranks
Model # � 1 � 2 � 3 � 4

5 31 39 53 59
9 100 100 100 100
14 100 100 100 100
17 100 100 100 100
20 39 64 80 80

Table 2: The 360 degree expriment. Percentages of ranks of correct models below 1, 2, 3
and 4.

and it has been used in recognition experiments reported in the literature [18, 15]. The
database contains images of objects rotated on a turntable taken from a static camera (18
of the 72 views of four selected objects are shown in Fig. 3). Such acquisition arrange-
ment, is more challenging than moving a camera around a static object. As a consequence
of the change of the relative position of objects with respect to the light source, relative
intensities of different surface patches can change dramatically. Moreover, specularities
appear at different positions on the surface. Another reason for choosing COIL–20 is
the variability of objects in the database, see Fig. 1. Some of the objects have no surface
texture (i.e. its albedo is constant), some are textured (wooden blocks), some have a very
complex pattern printed on the surface. The materials are mostly specular. Shape ranges
from circularly symmetric with simple geometry (cups and pots) to a complex multi-part,
e.g. of the toy cars.

4.1 Recognition in the�30 degree range

The first experiment carried out was designed to test the ability of the IPSS method to
discriminate between the 20 objects of COIL–20. A model in terms of IPSS was build
from a single prototype view (position 0). Images taken at� 10; 20; 30 degrees were used
as tests3 For each test image, the probabilitiesP (MijS) were calculated and the rank of
the model corresponding to the test object stored.

Results of the experiment are summarised in Table 1. The histogram of ranks is shown
on the right, the cumulative histogram (expressed in percentages) on the left. Unsurpris-
ingly, recognition performance deteriorates as a function of the angular difference be-
tween the test and model views. For two reasons, the results are not symmetric w.r.t the

3COIL–20 contains 72 views of every object. The turntable was rotated by 5 degree between two consecu-
tive acquisitions.
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Figure 3: The 360 degree expriment. Test data (top), ranks of the correct model (center)
and selected views in higher resolution (bottom).

0 view. Firstly, most objects are not symmetric around the plane passing through the
center of the image. Secondly, illumination effects are different for rotations in opposite
directions.

Recognition performance, measured by the average match percentile4 is above98%
in the(�20;+20) interval and above96% for �30 degrees.

In fact, all the mismatches not only for 10 but also for 20 degree views are confined
to objects with very similar surface structure, e.g. the three wooden toy blocks (#2, #7
and #11), or the cars (#3, #6 and #19). On the other hand, some object are recognised
even if a totally different part of their surface is imaged - see Fig. 2. This is a consequence
of the fact that the recognition algorithm does not try to establish correspondence between
points (or profiles) which is impossible in this case. However, if the test image profile falls
into a region (in the profile space) with high density of measurements from the correct

4The average match percentile is defined as
P

r

N�r

N�1
N(r)
N

whereN is the number of models,r is the rank
of the model of the test object andN(r) is number of models with rankr.






Angle Model #4 Model #9 Model #14

+30

+20

+10

-10

-20

-30

Table 3: Test images used in the occlusion experiment.

object, it still modifies the probabilitiesP (MijS) in favour of the correct model.

4.2 Recognition of all views from a single model image

Looking again at Fig 2, it is clear that it is unrealistic to expect that all of the objects
in the COIL–20 database can be recognised from an arbitrary view using only a model
based on a single view. The number of views required for 360 degree recognition depends
on various symmetries of the objects. For a selected set of objects, numbers 17, 14, 9,
5 and 20, an experiment was performed where images from all views apart from view 0
were tested (the single view model was built from view 0). Images of rotated objects used
in the experiment are shown at the top of Fig. 3, selected views in higher resolution at the
bottom.

Results of the experiment are shown in the center of Fig. 3 and summarised in Table 2.
For the rotationally symmetric object #17 recognition is perfect. Object #14 has a large
rotationally symmetric part and the correct model is also always ranked 1. Object #9 has
four almost identical rectangular sides and two squares sides not visible in the model view.
The profiles acquired on the model (see Fig. 3, left column of the bottom section) undergo
an affine transformation that is not a similarity (highly anisotropic scaling takes place).
Recognition performance is still perfect. Object #5 is a similar box, but with different
letters printed on its back. Perfect recognition is achieved around 0 and 180 degrees.
For the intermediate views, the rank of the correct model is growing to the level close to
random guessing. Clearly, at least two views are needed to represent the object. Object
#20 has different text written on its side and the lid undergoes a transformation that is not
a similarity. Recognition is perfect for a certain interval around 0 degrees(300; 60). This
pattern is typical for other asymmetric objects in the database.

4.3 Recognition under occlusion

Four objects were selected for the occlusion experiment. These objects were always
recognised correctly in the initial experiments described in section 4.1. Either top, bottom,






Ranks of models
Angle Model #4 Model #9 Model #14

+30 1 1 2 6 1 1 1 1 1 1 1 3
+20 2 1 1 2 1 1 1 1 1 1 1 1
+10 1 1 1 1 1 1 1 1 1 1 1 1
-10 1 2 1 1 1 1 1 1 1 1 1 1
-20 1 6 1 3 1 1 1 1 1 1 1 1
-30 1 5 2 3 1 1 4 1 1 1 1 1

Table 4: Occlusion experiment. Ranks of correct models.
Percentage of ranks

Model # � 1 � 2 � 3 � 4

4 58 79 88 88
9 96 96 96 100
14 96 96 100 100

Table 5: Ranks of correct model in the occlussion experiment.

left or right half of the image was replaced by black in the test image. The test images
are shown in Table 3. The model was the same as in the previous experiments, based on
a single view at 0 degrees. Ranks of the correct models are shown in Table 4, cumulative
percentages summed over all angles are presented in Table 5. For+10 degrees, recog-
nition performance is perfect, for�10 it is almost perfect with a single second ranked
correct model. As the angular difference grows, performance deteriorates, but for objects
#9 and #14 it stay almost perfect. Recognition results for object #4, the toy cat, are worse.
However, it is necessary to realise that for the�30 degree view a rather small part of the
surface visible in view 0 is still visible.

5 Conclusions

A new object recognition method, the Invariant Pixel Set Signature, was introduced. Ob-
jects were represented with a probability density on the space of invariants computed
from measurements (pixel values) inside convex hulls of n-tuples of interest points. Ex-
perimentally the method was tested on COIL–20, a publicly available database of 72
views of 20 natural object rotating on a turntable. With a model built froma single view,
recognition performance measured by the average match percentile was above98% in the
(�20;+20) interval and above96% for �30 degrees. For some object, 100% first rank
is achieved for all 72 views. Robustness to occlusion was shown using images with one
half covered. For a small change of viewpoint (�10) recognition of the occluded object
is perfect and it deteriorates gracefully with the increase in viewpoint change. Experi-
ments demonstrating recognition performance in scenes containing multiple objects with
non-homogeneous background reported in [10] were not included for lack of space.
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