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Abstract

This paper presents an eigenclustering approach to line-segment grouping.
We make three contributions. First, we show how the geometry of the line-
endpoints can be used to compute a grouping field by interpolating a polar
lemniscate between them. Second, we show how to adaptively threshold
the grouping field to produce a line-adjacency matrix. Finally, we present
a non-iterative method for locating line-groupings using the eigenvectors of
the adjacency matrix.

1 Introduction

Line-segment grouping is a crucial task in intermediate level vision. The reasons for
this are two-fold. Firstly, edge detection is an inherently unreliable process which results
in segmentation errors such as line fragmentation or corner dropout. Before significant
structures can be extracted, then these errors must be corrected. Secondly, the signifi-
cant perceptual groupings may be subsumed in clutter or background. The goal of line
grouping is to extract significant perceptual structure from background while correcting
line-fragmentation errors.

The line grouping process can be viewed as a three-stage process. First, the geometry
of adjacent line-segment pairs is used to compute a grouping field which gauges their
perceptual affinity to one-another. There are a number of ways in which this can be done.
For instance, several authors including Guy and Medioni [2] and ShaShua and Ullman
[8] have used curvature criteria to group edgels. Heitger and von der Heydt [3] have
a biologically plausible grouping field based on polar alignment potentials. Jacobs and
Williams have developed a stochastic completion field [13][12]. Once the grouping field is
to hand, then the next task is to compute a perceptual adjacency graph by thresholding the
grouping field. Finally, perceptual groupings can be extracted from the grouping field or
the adjacency graph. One of the most popular approaches here is to use the eigenstructure
of the adjacency graph to find the main groupings. This can be viewed as using pairwise
clustering to to find significant arrangements for instance Perona and Freeman [5] extend
the iterative normalised cut idea of Shi and Malik [9] to line-patterns. Sarkar and Boyer
[7] have used ideas from spectral graph theory to find disjoint subgraphs of the line-
adjacency matrix. However, this method is again an iterative one since it requires each
cluster in turn to be located and removed from the scene.

Our aims in this paper are threefold. First, we aim to show how ideas similar to
those of Heitger and von der Heydt [3] can be used to compute a grouping field for line-
segments. Rather than using polar kernels to accumulate a grouping field for individual
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edgels, we use them to model the grouping of lines using the geometry of their endpoints.
Second, we show how to adaptively threshold the resulting grouping field to produce a
line-adjacency matrix. Finally, we develop a non-iterative method for simultaneously
extracting all of the perceptual clusters from the line-adjacency matrix. We provide a
theoretical analysis which demonstrates that the perceptual clusters can be extracted sim-
ulataneously using the different eigenvectors.

2 Probabilistic Grouping Field

We are interested in locating groups of line-segments that exhibit strong geometric affinity
to one-another. In this section we provide details of a probabilistic linking field that can
be used to gauge geometric affinity. To be more formal suppose we have a set of line-
segmentsL = f�i; i = 1; :::; ng. Consider two lines�i and�j drawn from this set.
Their respective lengths areli andlj . Our model of the linking process commences by
constructing the line�i;j which connects the closest pair of endpoints for the two lines.
The geometry of this connecting line is represented using the polar angle�ij of the line
�i;j with respect to the base-line�i and its�ij . We measure the overall scale of the
arrangement of lines using the length of the shorter line�̂i;j = min[li; lj ].

The relative length of the gap between the two line-segments is represented in a scale-
invariant manner using the dimensionless quantity�i;j =

�i;j
�̂i;j

.
Following Heitger and Von der Heydt [3] we model the linking process using an elon-

gated polar grouping field. To establish the degree of geometric affinity between the lines
we interpolate the end-points of the two lines using the polar lemniscate

�i;j = k cos2 �i;j (1)

The value of the constantk is used to measure the degree of affinity between the two lines.
For each linking line, we compute the value of the constantk which allows the polar locus
to pass through the pair of endpoints. The value of this constant is

k =
�i;j

�̂i;j cos2 �i;j
(2)

The geometry of the lines and their relationship to the interpolating polar lemniscate
is illustrated in Figure 1. It is important to note that the polar angle is defined over the
interval�ij 2 (��=2; �=2] and is rotation invariant.

We use the parameterk to model the linking probability for the pair of line-segments.
When the lemniscate envelope is large, i.e.k is large, then the grouping probability is
small. On the other hand, when the envelope is compact, then the grouping probability
is large. To model this behaviour, we assign the linking probability using the exponential
distribution

Pij = exp[��k] (3)

where� is a constant whose best value has been found empirically to be unity. As a
result, the linking probability is large when either the relative separation of the endpoints
is small i.e. �i;j << �̂i;j or the polar angle is close to zero or�, i.e. the two lines are
colinear or parallel. The linking probability is small when either the relative separation of
the endpoints is large i.e.�i;j >> �̂i;j or the polar angle is close to�2 , i.e. the two lines
are perpendicular. In Figure 2 we show a plot of the linking probability as a function of
�i;j
�̂i;j

and�i;j .
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Figure 1: (a) Geometric meaning of the parameters used to obtainPij ; (b) 3D plot showing the
threshold for all the combinations ofaij with n = 2

2.1 The Entropy Based Thresholding

With the linking field to hand, we can construct a binary line-adjacency matrix. The
elementsAi;j of the matrix are computed by thresholding the linking probabilities using
the following rule

Aij =

8<
:

1 if Pij � � andi 6= j
0 if i = j
0 otherwise

(4)

The threshold� is computed using the mean, variance and entropy of the linking
probabilities. However, prior to computing these quantities, we set to zero all elements

(a) (b)

Figure 2: (a) Plot showing the level curves; (b) 3D plot showingPij on thez axis






of the matrixA whose elements are vanishingly small. If there areN non-vanishing
elements of the matrixA, then the mean, variance and entropy are defined as follows

� =
1

N

nX
i=1

nX
j=1

Pij (5)

�2 =
1

N

nX
i=1

nX
j=1

(�� Pij)
2 (6)

h = �
1

N

nX
i=1

nX
j=1

Pi;j log2 Pij (7)

The mean and variance measure the average value and the spread of the linking probabili-
ties. The entropy measures the degree of equivocation or ambiguity. We set the threshold
to be

� = �� � + h (8)

In this way the threshold is large if either the variance is large or the entropy is large,
i.e. there is a high degree of equivocation concerning the adjacency of a line-segment.
The idea of using the entropy to set the threshold is widespread in the literature on binary
image segmentation. Thorough reviews of the topic can be found in [11] and [6]. In
Fig. 1(b) we a 3D plot of the threshold� as a function of the linking probabilityP .

2.2 The Eigenclustering Process

The overall aim in this paper is to demonstrate that perceptual groupings can be extracted
from line-patterns using the eigen-modes of the line-adjacency matrixA. There are many
variants of this idea described in the computer literature. For instance, the closely re-
lated algorithms of Perona and Freeman [5], and, Sarkar and Boyer [7] both use the first
eigenvalue to locate groupings. Shi and Malik [9], on the other hand, have used the sec-
ond smallest eigenvalue to segment the image into background and foreground using the
iterative normalised cut method.

Stated formally, the problem is as follows. If a scene consists of distinct groups of line-
segments, then each grouping can be represented by a disjoint adjacency graph. Suppose
that each of the disjoint adjacency graphsGi are represented by the adjacency matrices
Bi. If the overall scene is represented by an adjacency matrixA, then the identification
of the disjoint adjacency graphs can be posed as that of locating the permutation matrix
Q which transforms the adjacency matrixA into a block-diagonal matrixB whose sub-
matrices areBi. The block diagonal matrix satisfies the conditionB = QAQT . There
are many ways of recovering the permutation matrixQ. Here we use the method of
characteristic polynomials.

To develop our eigenclustering method we make use of several results from linear
algebra and spectral graph theory [1]:

� Theorem 1: Consider the direct sum ofm graphsG1; : : : ; Gm. Let Bi be the
adjacency matrix of the graphGi(i = 1; : : : ;m). The adjacency matrixB of G1 +
: : :+Gm is of the form:

B =

0
BBB@

B1 : : : O

.

.

.

.
.
.

.

.

.
O : : : Bm

1
CCCA (9)






Further, letRB(�) be the characteristic polynomial of the eigenvalue equationj
B � �I j= 0. If a graph is the direct sum of them componentsBl; l 2 (1; : : : ;m)
then:

RB(�) = RB1(�) � � �RBm
(�) (10)

This property can be demonstrated using the Laplace expansion of the determinant.
We will also use the following theorem from [10]:

� Theorem 2: LetBi be ann byn irreducible non-negativeblock matrix with distinct
eigenvalues�1; : : : ; �n, then there exists an eigenvectorx associated with� =
max(�1; : : : ; �n) whose coefficients are all positive.

From the theory of linear equations we can derive the following theorem:

� Theorem 3: Suppose that the adjacency matrixB of G1 + : : : + Gm is of the
block-diagonal form:

B =

0
BBB@

B1 : : : O

.

.

.

.
.
.

.

.

.
O : : : Bm

1
CCCA (11)

Since the eigenvalues ofB are the union of the eigenvalues ofG1; : : : ; Gm then if
there exists a�j 2 RBi

(�); i = (1; 2; : : : ;m) with multiplicity 1, then there exists
an eigenvector x

¯
(�j) corresponding to�j whose coefficients corresponding to the

nodes inGl with l 6= i andl = (1; 2; : : : ;m) are null.

We can use these properties to locate the distinct perceptual clusters, or subgraphs, in
the line-pattern adjacency matrix. Our goal is to find the permutation matrixQ which
induces a block diagonal structure on the matrixA. The blocks are associated with
the eigenvectors whose eigenvalues are positive and whose components are all of the
same sign. To be more formal, let the set of eigenvectors ofA beS = fx

¯
(�j) j j =

1; 2; : : : ; ng, where x
¯
(�j) = (x1(�j); x2(�j); : : : ; xn(�j))

T is the eigenvector ofA asso-
ciated with the eigenvalue�j . Using the theorems listed above the eigenmodes associated
with the clusters are those which have positive eigenvalues (�j > 0) and whose eigenvec-
tors all have components of the same sign (xi(�1) > 0 8 i or xi(�j) < 0 8 i).

Another important consequence of this property is that the first eigenvalue of the ma-
trix A will describe the graphGi. As a result the most significant cluster can be identified
by choosing only the first eigenvalue ofA. It should be noted that the eigenvectors ob-
tained describe only the clusters with more than one member. This is a useful property,
since it allows us to discard noise.

These properties allow us to develop a single-pass clustering algorithm. We assign
nodes to clusters in the following way. First, we follow Theorem 2 and select the eigen-
vectors which have positive eigenvalues. Next, we select those eigenvectors whose co-
efficients are all either of the same sign, or are zero, as cluster prototypes. The node
i is assigned to the cluster with eigenvalue�j provided thatxi(�j) > 0. Because the
eigenvalues are unique from Theorem 3 this results in an unambiguous assignment.






2.3 Pseudocode

Now that we have presented the theoretical basis of the algorithm, we can develop a prac-
tical algorithm for assigning lines to eigenclusters and hence extract perceptual groupings.
The pseudo-code for the algorithm is listed below.

For i = 1; 2; : : : ; n
For j = 1; 2; : : : ; n

GetPij ;
For i = 1; 2; : : : ; n

For j = 1; 2; : : : ; n
GetAij ;

Get the eigenvalues�1; �2; : : : ; �n of A;
Get the eigenvectorsx(�1); x(�1); : : : ; x(�n) of A;
m = 0;
For i = 1; 2; : : : ; n

f
k = 0; l = 0;
If �i > 0 then

For j = 1; 2; : : : ; n
f

If xj(�i) � 0 then k = k + 1;
If xj(�i) � 0 then l = l + 1;

g
If k = n or l = n then

f
m = m+ 1;
For j = 1; 2; : : : ; n

If xj(�i) 6= 0 thenNodej 2 Clusterm ;
g

g

3 Experiments

We have experimented with the new line-grouping method on three types of data. These
are artificial text patterns, patterns extracted from synthetic images and line-patterns ex-
tracted from real-world images. These experiments will be described in more detail in the
remainder of this section

3.1 Test Patterns

Our aim here is to test the response of the grouping field under varying opening angle,
gap lengths and relative line-lengths. We present our results using the opening angle�i;j
and the normalised length�i;j =

�i;j
�̂i;j

.
Our test patterns are composed of 7 straight lines arranged in a concentric way. The

distance between the center of the pattern and the starting point of each line is identical.
However, we have varied the length of the gap. Since the linking field is symmetric, for
the purposes of testing it is sufficient to vary the angles of the lines in the patterns from0
to 2� in intervals of�=2.

In Figure 3 we show two examples of the test-pattern with different gap-lengths. In
Figure 4 we show plots of the linking probabilityPi;j (left) and the normalised gap-length
�i;j for the two patterns.�ij . The quantities are computed with respect to the base-linel0.
The x-axis of the plots is the line-index of the lines in the figure. The plots show that the
linking field is weak when the curvature of the line segment pair is large.






Figure 3:Test patterns

3.2 Artificial Images

Figure 5 shows two examples of the grouping process. In each case the left-hand image
is the test pattern with the different eigenmodes coded with different colours The right-
hand image is the set of lines belonging to the principal eigencluster (i.e. the one with the
largest eigenvalue). In the first example (the top row), we show that the method is able
to group the four central line-segments without connecting them to the three distractors.
In the second example (the bottom row) the two crosses form distinct clusters and the
principal eigencluster is the inner-most set of lines.

Figure 6 shows examples of the grouping process applied to an approximately circular
configuration of line-segments. Here we have gradually added an increasing number of
distractors to the figure. In each case the left-hand image of each pair shows the origi-
nal line-pattern, whiel the right-hand image shows the cluster associated with the largest
eigenvalue. The method does not break untill there are 400 distractors.

It is important to stress that the threshold� has been set automatically in each of the
examples presented in this section. In each case it adjusts itself to extract the dominant

Figure 4:Results of the tests






(a) (b) (c) (d)

Figure 5: (a) First line pattern; (b) Resulting cluster of the first line pattern; (c) Second line
pattern; (d) Resulting cluster for the second line pattern

perceptual structure from the background. Finally, it is important to note that the eigen-
clusters have been extracted using a single pass of the algorithm.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: (a)Circular pattern with 100 distractors; (b) Resultant single cluster image; (c)Circular
pattern with 100 distractors; (d) Resultant single cluster image; (e)Circular pattern with 300 dis-
tractors; (f) Resultant single cluster image; (g) Circular pattern too corrupted to be recognized(400
distractors); (h) Resultant pattern splited in two clusters






(a) (b) (c)

(d) (e) (f)

Figure 7: (a) Input image; (b) Result of the Canny Edge Detector; (c) Resulting cluster of the first
image (� = 0:17); (d) Second input image; (e) Result of the Canny Edge Detector; (f) Resulting
clusters (� = 0:2084)

3.3 Real World Images

In this section we present results on real-world images. The edges have been extracted
from the raw images using the Canny edge-detector. Straight-line segments have been
extracted using the method of Yin [4]. The different eigenclusters are again displayed in
different colours.

In Figure 7a we show a cluttered image of the loft space above our lab. Figure 7b
shows the edges extracted using the Canny edge-detector. Figure 7c shows the grouped
line-segments. The different clusters correspond to distinct groups of lines. For instance
even though the window is occluded by a beam, the set of glazing bars emerges as a single
cluster.

The second image shown in Figure 7d showsis of two helicopters. Here the first two
eigenclusters correspond to the two objects in the scene.






4 Conclusions

We have made three contributions in this paper. First we have described how to compute
a line-linking field using a polar envelope. Second, we have shown how to automatically
threshold the resulting field to produce a line-adjacency matrix. Finally, and most impor-
tantly we have developed a single-pass method for grouping the line-segments using the
eigenvalues of the resulting adjacency matrix.

The grouping method offers a number of advantages, First the method appears to be
capable of robustly linking straight when significant levels of noise and occlusion are
present. Second, the method is capable of overcoming corner drop-out and works well
with a variety of edge-detectors.

We plan to develop the work in a number of ways. First, we intend to extend the
method to unthresholded proximity matrices. Second, we are exploring its use in con-
junction with splines rather than straight-line segments.
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