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Abstract

This work investigates the propagation of errors from the camera motion to
the epipolar constraint. A relation between the perturbation of the motion
parameters and the error in the epipolar constraint is derived. Based on this
relation, the sensitivity of the motion parameters to the epipolar constraint
is characterised, and a constraint on the allowed perturbation in a motion
parameter in response to a threshold for the produced error in the epipolar
constraint is determined. The presented error propagation model is useful to
vision systems such as a mobile robot where the camera motion is provided
by an odometry sensor. Experimental results on real images are presented.

1 Introduction

Projections of a scene point in two images can be related by the well-known epipolar
constraint [1]. Assuming that the relative camera motion between the two images is not a
pure rotation, the scene point and the two camera centres then define a plane (called the
epipolar plane) which contains the images of the scene point and intersects with the two
image planes in two lines (called the epipolar lines) (see Fig. 1). Thus, the projection of a
scene point in one image must be on the epipolar line which can be determined from the
projection of the scene in the other image. The epipolar constraint can be uniquely char-
acterised by a fundamental matrix [3, 6] which is a3�3 matrix encoding the information
of the camera calibration and motion (see Section 2).

The epipolar constraint on two corresponding image points is often used to reduce the
solution space of the matching problem [9, 5] which is itself crucial to vision tasks such as
structure from motion [2, 12] and stereo vision [4, 1]. In this case, the fundamental matrix
is computed from the camera calibration and motion which are supposed to be provided
by the vision system1. Although the camera can be pre-calibrated using a sophisticated
calibration algorithm, the camera motion between images may need to be determined at
each time when the image is taken. Vision systems such as a mobile robot often have an
odometry sensor which can be used to provide an estimate of the camera motion. The
fundamental matrix directly derived from the camera motion provided by the odometry
sensor is never perfect, because of the wheel slippage, backlash and friction. Without

1The epipolar geometry can also be estimated directly from two images, assuming the correspondence be-
tween image points in the two images is determined [13]. Here, we consider the inverse case that the epipolar
geometry is needed for resolving the matching problem.
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Figure 1: The epipolar constraint on two corresponding image pointsp andq which are
the projection of the scene pointX. Pointsp andq are on the epipolar lineslq andlp
respectively. The linelp(lq) is the intersection of the image plane 2(1) with the epiolar
plane determined from camera positionsO1 andO2, and the image pointp(q).

considering the error in the epipolar constraint, the matching algorithm may reject correct
candidates for matching or accept erroneous matchings. It is then important to know
how much error is caused in the epipolar constraint due to the perturbation in the camera
motion.

In this work, we investigate the propagation of errors from the camera motion to the
epipolar constraint on two corresponding image points. The error in the epipolar con-
straint is simply characterised using the distance from an image point to the epipolar line
derived from the corresponding image point in the other image. We first derive a relation
between the perturbation of the motion parameters and the error in the epipolar constraint.
Based on this relation, the sensitivity of a motion parameter to the epipolar constraint is
characterised. We show that the effect of the motion perturbation on the epipolar con-
straint depends on the direction of the camera motion and the depth of the scene point.
We then present a constraint on the allowed perturbation in a motion parameter in re-
sponse to a specified error in the epipolar constraint. Thus, given a threshold for the
allowed error in the epipolar constraint, the required accuracy in the measurement of a
motion parameter can be determined, and vice versa.

The motivation of this work is in connection with the reconstruction of 3D environ-
ments using an autonomous mobile robot. The correct matching of feature points between
successive images taken by the robot is important in order to obtain an accurate estimate
of the 3D structure from a structure from motion algorithm [7]. In our matching algo-
rithm [10], matching candidates are selected based on the epipolar constraint determined
the camera motion estimated from the odometry of the robot. Since the range of the
perturbation in odometry can often be empirically determined, the presented error propa-
gation model then provides an extra constraint to enhance the robustness in determining
matching candidates. Furthermore, the error model also provides a reference for balanc-
ing the required accuracy of the vision system in measuring the camera motion and the
epipolar error which must be tolerated by applications on the system.

The rest of the paper is organised as follows. Section 2 describes the epipolar con-
straint characterised by the fundamental matrix which is expressed in terms of the camera
calibration and motion. Section 3 discusses the error propagation from the camera motion
to the epipolar constraint. The sensitivity of the motion parameters to the epipolar con-






straint is characterised. Section 4 presents a constraint on the allowed perturbation in a
motion parameter in response to a specified error in the epipolar constraint. Experimental
results are presented in section 5. Finally, section 6 is for conclusions.

2 Epipolar geometry

Projections of a scene point in two images can be related by the epipolar constraint which
can be expressed as follows [3, 6]:

qTFp = 0 (1)

where,p = [x y 1]T andq = [x0 y0 1]T represent projections of a scene point in the first
and second images respectively, andF is a3 � 3 matrix, called the fundamental matrix,
which can be determined from the camera and motion parameters as follows:

F = C�TR2[t1 � t2]�R
T
1 C

�1 (2)

where,C is the calibration matrix describing the camera parameters,Ri andti, i = 1; 2,
are rotations and translations associated with the first and second images respectively,
[v]� denotes the cross product of a3� 1 vectorv2, andT denotes transpose operation on
matrices and vectors.

Without loosing the generality, we assumeR1 = I andt1 = 0, and useR andt to
referR2 andt2 respectively. Equation (2) then becomes

F = C�TR[�t]�C
�1 (3)

The calibration matrixC can be expressed as follows (lens distortion is ignored):

C =

2
4 fx 0 x0

0 fy y0
0 0 1

3
5 (4)

where,fx andfy are focal lengths in X-axis and Y-axis directions, and(x0; y0) is the
image centre. The translationt is measured within a chosen world coordinate system,
and expressed ast = [tx ty tz]

T , where,tx, ty, andtz are translations inX , Y , andZ
directions of the world coordinate system respectively. We use Euler angles to describe
the rotation from the world coordinate system to the camera coordinate system [8]. The
rotation transformation is characterised by first rotating the camera frame (at this time,
it is aligned with the world frame) aboutZ-axis by an angle
, then rotating the camera
frame about its newY -axis by an angle�, and finally rotating the camera frame about its
currentX-axis by an angle�. The physical meaning of rotation angles depends on the
specific vision system. In our system, for example,� and� correspond to rotations in
tilt and pan of the robot head respectively. The rotation matrixR then has the following
form:

R =

"
cos � cos 
 � cos � sin 
 sin 


cos� sin 
 + sin� sin � cos 
 cos� cos 
 � sin� sin � sin 
 � sin� cos �

sin� sin 
 � cos� sin � cos 
 sin� cos 
 + cos� sin � sin 
 cos� cos �

#
(5)

2If v = [vx vy vz ]T , then

[v]� =

"
0 �vz vy

vz 0 �vx

�vy vx 0

#
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Figure 2: Characterisation of the error in the epipolar constraint on two corresponding
pointp andq.

The epipolar constraint (1) indicates that the image pointq is on a linelp: au+ bv+
c = 0 in image 2, where line parametersa, b andc are determined as follows:2

4 a
b
c

3
5 = Fp = F

2
4 x

y
1

3
5 (6)

The linelp is called the epipolar line associated with pointp. Geometrically, the epipolar
line is the intersection of the image plane 2 with the epipolar plane which is determined
from the image pointp and two camera centres (see Fig. 1).

In practical situations, the camera calibration is often required to do once, and can be
achieved off-line using a sophisticated algorithm. In the following discussion, we assume
that the calibration matrixC is known, and the only error in the fundamental matrix is
from the perturbation in the camera motion.

3 Error propagation

Let � =

�
e

t

�
, where,e = [�� 
]T . Thus,� is a vector composed of all parameters

describing the camera motion. The fundamental matrixF and the epipolar linelp are
then functions of the parameter vector�, and will be referred asF (�) and lp(�) (with
corresponding line parametersa(�), b(�) andc(�)) respectively. Obviously, when the
parameter vector� is measured with errors, the epipolar constraint (1) may no longer be
satisfied, i.e. the image pointq may no longer be on the epipolar linelp(�).

To characterise the error in the epipolar constraint on two corresponding pointsp and
q, we investigate the distance from the pointq to the epipolar linelp(�). Letd(�) be the
signed distance fromq to lp(�) (see Fig. 2). Then,d(�) can be determined as follows:

d(�) =
qTF (�)p

[a2(�) + b2(�)]1=2
(7)

The sign ofd(�) indicates which side the pointq is located to the linelp(�). Let �� =�
�e
�t

�
be the true value of�. Then,d(��) = 0. Assuming that� varies around�� within






a small neighbourhood, we can approximated(�) by expanding it at�� till the first order,
i.e.

d(�) �
X
i

@d(��)

@�i
��i (8)

where�i is the ith component of the parameter vector� and ��i = �i� ��. From the
equation (7), we have

@d(��)

@�i
=

qT
@F (

��)
@�i

p

[a2(��) + b2(��)]1=2
(9)

For a specific motion parameter�i,
@F (

��)
@�i

can be determined from the equation (3). For
example, for the rotation parameter�,

@F (��)

@�
= C�T @R

@�
[�t]�C

�1

������ (10)

Let �d�i =
@d(

��)
@�i

��i. Then,�d�i characterises the induced epipolar error due the perturba-
tion of the parameter�i. Therefore,d(�) can be evaluated as the sum of errors produced
from perturbations of each motion parameter.

For two corresponding image points, the value ofd(�) is, however, dependent upon
the camera motion. The motion perturbation in the translation direction has no effect on
the epipolar constraint. Assume

� =

�
�e

�t+ �n

�
(11)

where,n=�t=k�tk is the direction of the camera translation�t, and� is a constant. Obvi-
ously,� differs from�� with a perturbation of the magnitude� in the camera translation�t.
Substituting the components of� into the equation (3), we haveF (�)=(1+�=k�tk)F (��)
which then leads tod(�)=�d(��)=0. This means that epipolar lines are invariant to the
motion perturbation along the camera translation only.

In the general case,d(�) or �d�i needs to be evaluated in order to examine the effect of

motion parameters on the epipolar constraint. Direct evaluation of the term@d(
��)

@�i
requires

the knowledge of the true camera motion��. In practical situation, we may only know an
estimate of the��, �̂. For example, when images are captured using a mobile robot, the
odometry of the robot can be used to provide an estimate of the true camera motion.

Provided�̂ is within a small neighbourhood of��, then @d(
��)

@�i
= @d(

^�)
@�i

to the first order.
Thus, for a typical measurement error��, the induced error in the epipolar constraint can
be estimated.

The induced error in the epipolar constraint also depends upon the depth of the cor-
responding scene point to the image plane. Assumep andq are images of a scene point
X = [X Y Z]T in space. Thenp andq can be written as follows:

�1p = CX
�2q = CRX � CRt

(12)

where,�1 and�2 are distances (depths) from the pointX to image planes 1 and 2 respec-
tively. Substituting above equations into (7), we can find that the errorjd(�)j decreases






as the increase of the depth�2, for a given scene pointX. Thus, for a given measurement
error��, image points corresponding to front scene points tend to have a larger error in
the epipolar constraint than those corresponding to scene points on the back.

Assume that the error in the measurement of the motion parameter�i is random and
has a Gaussian distribution with zero mean and variance�2

i , i.e. ��i is a random variable
with a Gaussian distributionN(0; �2

i ). Also, assume that each motion parameter is inde-
pendently estimated by the vision system, i.e.��i and��j , i 6= j, are independent. It then
follows thatd(�) is also random and has a Gaussian distributionN(0; �2), where,

�2 =
X
i

�
@d(��)

@�i
�i

�2

(13)

The value of� then characterises the sensitivity of the epipolar constraint on two corre-
sponding image points to perturbations from all motion parameters. The larger the value
of � is, the more sensitive the epipolar constraint is.

4 Bound of errors

Based on the error propagation discussed in previous sections, we can also relate the
accuracy in the camera motion to the accuracy in the epipolar constraint. Thus, we can
derive a constraint on the bound of errors in the camera motion and the epipolar constraint.

According to the equation (8), given a measurement error��, we can estimated the
induced error in the epipolar constraint. Conversely, given a threshold for the allowed
error in�d�i produced due to the perturbation in motion parameter�i, we can determine
the required accuracy in the measurement of the parameter�i. Assuming thatDi is a
threshold for the allowed maximum error in�d�i , the required accuracy in the measure-

ment of�i can be correspondingly determined from the constraintj@d(
��)

@�i
��ij � Di. This

constraint on the bound of errors is often useful to a vision system which has a sensor for
the camera motion. It provides a relation for balancing the error which must be tolerated
by applications based on the epipolar constraint and the accuracy of the system (e.g. the
odometry of a mobile robot) for estimating the camera motion.

5 Experimental results

Experiments have been applied to pairs of images captured using a mobile robot mounted
with a single CCD camera. The camera coordinate system is defined so that its Z-axis is
aligned with the optical axis of the camera. The motion of the camera is determined by
a translation within the world coordinate system which is defined with a known relation
to the camera frame associated with the first image, and a rotation in tilt and pan angles
which correspond to the Euler angles� and� respectively (see Section 2). The translation
is measured in centimetres while the rotation is measured in degrees. The camera is
calibrated using a robust calibration algorithm [11]. The odometry of the robot is used to
provide an estimate of the camera motion to evaluate the effect of the motion parameters
on the epipolar constraint.

For each pair of images, a set of corresponding points are chosen by applying an
automatic junction detection and matching operation [10] and then removing outliers. For
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Figure 3: Experimental result on a pair of images in a sequence captured by a mobile
robot moving along a corridor. (a), (b), (c) and (d) present the epipolar errors caused by
the perturbation in tilt angle�, pan angle�, translationtx and translationty respectively.
In each case, the left two images show the epipolar error at each pair of corresponding
points, while the right graph shows the distribution of errors at points in the first image.

each pair of corresponding points, the epipolar errors�d�i produced from the perturbation
of each motion parameter are evaluated. The value of��i is taken as 1 degree for rotation
parameters, and 1cm for translation parameters. Histograms describing the distribution of
�d�i for all chosen corresponding points in the image are also computed.

Fig. 3 shows the experimental result on a pair of two images in a sequence taken as
the robot moves along a corridor. Each image has a resolution of720�484 pixels. The
world coordinate system is defined to be aligned with the camera frame associated with
the first image. The camera motion involves a single translation along the Z-axis of the
world coordinate system. According to the discussion in Section 3, the perturbation in
translation parametertz then has no effect on the epipolar constraint. This means that, in
this case, the accuracy in measuringtz is not important to the epipolar constraint. Fig. 3a,
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Figure 4: Average epipolar errors in 10 successive pairs of images in the corridor se-
quence. (a), (b), (c) and (d) show the average errors caused by the perturbation in tilt
angle�, pan angle�, translationtx and translationty respectively.

Fig. 3b, Fig. 3c and Fig. 3d show the epipolar errors produced from the perturbation in
tilt angle�, pan angle�, translationtx and translationty respectively. In each case, the
left two images show the epipolar error at each pair of corresponding points. The error
is represented as a vector originated from the point of interest and pointed towards the
epipolar line derived from the corresponding point in the other image3. A large vector
indicates a large error in the epipolar constraint. The distribution of errors at points in the
first image is shown in the right graph. It can be seen that, in this example, a1� error in
rotation parameters� and� will cause much more error in the epipolar constraint than a
1cm error in translation parameterstx andty. For most of points, epipolar errors caused
by translations are less than 5 pixels, while epipolar errors caused by rotations are around
15 pixels.

To investigate the consistency in the sensitivity of a motion parameter within an image
sequence, we also compute the average of epipolar errors on all corresponding points
in each successive pair of images in the sequence. Fig. 4 presents average epipolar
errors in 10 successive pairs of images in the corridor sequence. Fig. 4(a), Fig. 4(b),
Fig. 4(c) and Fig. 4(d) show the average errors caused by the perturbation in tilt angle
�, pan angle�, translationtx and translationty respectively. It can be seen that, given
a 1� error in rotations and 1cm error in translations, rotation parameters� and� are
consistently more sensitive to the epipolar constraint than translation parameterstx and
ty. For the perturbation in translations, the produced error is, in average, about 2 pixels.
Approximately, an accuracy of a perturbation less than0:14� in tilt and 0:2� in pan is
required in order to ensure the produced epipolar error is within 2 pixels.

Fig. 5 shows the result of an experiment applied to a pair of two images in a sequence
taken as the robot moves across a lab. Each image has a resolution of720�576 pixels.
The camera involves a single translation. The initial camera configuration is calibrated,
and the world coordinate system is defined so that its Z-axis is aligned with the direction
of the camera translation. Thus, the perturbation in translation parametertz has no effect
on the epipolar constraint. Fig. 5a, Fig. 5b, Fig. 5c and Fig. 5d show the the epipolar
errors produced from the perturbation in tilt angle�, pan angle�, translationtx and
translationty respectively. In each case, the left two images show the error at each pair
of corresponding points, while the right graph shows the distribution of errors at points in
the first image. It can be seen that, in this example, the perturbation in the tilt angle� will
cause much more error in the epipolar constraint than the perturbation in the pan angle
�. This is not surprising since the perturbation in the tilt angle is in the direction vertical

3Vectors are properly scaled in order to display them in images. Here, the same scale factor is used for all
cases. The effect on different cases can then be compared based on the length of vectors.
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Figure 5: Experimental result on a pair of images in a sequence captured by a mobile
robot moving across a lab. (a), (b), (c) and (d) present the epipolar errors caused by the
perturbation in tilt angle�, pan angle�, translationtx and translationty respectively.
In each case, the left two images show the epipolar error at each pair of corresponding
points, while the right graph shows the distribution of errors at points in the first image.

to the direction of the camera motion while the perturbation in the pan angle is in the
direction along the camera motion. Errors caused by a 1cm perturbation in translationstx
andty are less than 3 pixels.

6 Conclusion

We have discussed the propagation of errors from the camera motion to the epipolar con-
straint. We have derived a relation between the perturbation in the camera motion and
the error in the epipolar constraint. We have shown that the error propagation depends
on the direction of the camera motion and the depth of the scene point. The effect of a






motion parameter on the epipolar constraint has been characterised. A constraint on the
allowed perturbation in a motion parameter in response to a specified error in the epipolar
constraint is also presented. Experiments on real images show that a rotation perturbation
vertical to the direction of the camera motion is more sensitive to the epipolar constraint
than a perturbation in translations. Approximately, an accuracy of a perturbation less than
0:1� in rotations is required in order to ensure that the produced epipolar error is at the
similar level as the one produced by a 1cm error in translations.

The presented model for error propagation is useful to vision systems such as a mobile
robot where the camera motion is provided by an odometry sensor. It provides a reference
for balancing the required accuracy of the vision system in measuring the camera motion
and the epipolar error which must be tolerated by applications on the system. It also
can be used to derive a constraint to refine the solution space for the matching problem.
Experimental results have been presented on real images.
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