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Abstract

Interactive techniques for geometric scene modelling typically give good
results at the expense of considerable user intervention. This paper describes
a working, interactive modelling system that allows the user to build models
quickly. Using a few, poorly localised feature correspondences the system
generates an initial guess at projection matrices and scene structure that is
used as a basis for subsequent automatic matching and triangulation. In
addition, the system provides an entirely flexible -constraint-based
reconstruction strategy that can be used to model parallelism and
orthogonality constraints on line directions and plane normals. The working
application (called ‘PhotoBuilder’) can be downloaded via the web page:
http://svr-ww. eng. cam ac. uk/ Phot oBui | der/

1 Introduction

There are various approaches to the problem of obtaining geometric models from
images [1,2] and extended image sequences [3]. The simplest systems' use conventional
photogrammetry to obtain a 3D, wire-frame model from feature correspondences
defined by hand. This approach has two disadvantages: (i) it is only possible to model
polygons entirely visible from at least two viewpoints, and (ii) the accuracy of the
model is sensitive to the accuracy of the feature correspondences. In contrast,
constraint-based modelling techniques allow improved accuracy and single-view
reconstruction by the application of the user’s prior knowledge of scene constraints
(such as parallelism and orthogonality). Such approaches are readily applicable to
architectural scenes. Several constraint-based schemes have been described. [1] is a
scheme based on primitives (simple 3D shapes such as prisms and pyramids)’. The
principle disadvantage of primitive-based schemes is that many real-world scenes
cannot be effectively decomposed into such simple geometric shapes. Furthermore, it is
frequently impossible to find viewpoints such that whole primitives are visible in a
single photograph, particularly where aerial views are unavailable. A more flexible
approach to constraint-based modelling is described in [2] (and extended in [4]). This
system allows the application of various kinds of constraint without the use of

"See ht t p: / / www. phot onpdel er. com
% A good example of a working system based on this approach is available at
http://ww. canoma. com
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primitives although it has the disadvantage that line directions and plane normals must
be determined before reconstruction using parallel lines defined in the image.

These constraint-based approaches have the disadvantage that they require
significant user intervention and the modelling process is time-consuming and slow. In
this paper we describe a complete geometric modelling system that uses automation to
significantly reduce the time taken to build models, and (optionally) provides an entirely
flexible constraint-based reconstruction strategy that can be used to model parallelism
and orthogonality constraints on line directions and plane normals.

2 Geometric Framework

From point correspondences x; defined in a sequence of images we aim to recover
camera projection matrices P; and scene structure X;. For a pinhole projective camera,
perspective projection from Euclidean 3-space to an image can be conveniently
represented in homogeneous co-ordinates by a 3 X 4 camera projection matrix P:

Ax; = FX, )

where x;; = (u, v, I)T, X=(x,y, z, I)T, and x;; is the projection of the jth vertex in the ith
image. The projection matrix has 11 degrees of freedom and can be decomposed into
the orientation and position of the camera relative to a world co-ordinate system:

P, =K, [R |T,] @

and a 3 X 3 camera calibration matrix K, corresponding to the following image plane
transformation:
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We have found the following three-stage modelling sequence to be the most
effective. Firstly, an intial guess at camera calibration parameters K; is determined using
vanishing points (Section 2.1). Next projection matrices P; and scene structure X; are
determined by ray bundle adjustment (Section 2.2). Finally, scene structure is enhanced
using constraints (Section 2.3).

2.1 Camera Calibration

A number of solutions have been proposed to the problem of estimating camera intrinsic
parameters K, . In [5], focal lengths for three or more cameras are estimated by making
assumptions of zero skew, square pixels, and principal point in the image centre.
Alternatively, based on [6], we can determine up to three camera intrinsic parameters
for a single camera using vanishing points according to the following algorithm:
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Fig 1: Modelling proceeds in three stages. Firstly camera calibration parameters are
determined using the vanishing points of orthogonal sets of parallel lines (a,b). Then
scene structure determined using ray bundle adjustment (c). Finally constraints are
applied. An outline of a roof is shown after reconstruction (d) with and (e) without
constraints.






1. The user identifies three sets of parallel lines in the image, corresponding with
three orthogonal directions in the world (see Figure 1(a,b)).

2. The vanishing point for each set of parallel lines is computed.

3. Vanishing points (u;, v, 1)" corresponding to three orthogonal directions in the
world provide the following constraint on KK;':

O, u, u, oA, 0 0 LU, Uy o

O al 2 o _ T
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Under the assumption of known aspect ratio and zero skew, this equation can be
rewritten to as 6 linear equations (from 6 elements of a symmetric matrix) and
solved to recover up to 3 camera intrinsic parameters and the unknown scale

factors A,”.

This technique is degenerate for images where two vanishing points lie at infinity.
In practice, this is not a significant problem since camera calibration need only be
estimated for two viewpoints in order to initialise the reconstruction process (see
Section 2.2).

2.2 Reconstruction

The next stage of the modelling process is to define image feature correspondences,
automatically or by hand. Ray bundle adjustment is used to optimise camera parameters
and scene structure given a good initial guess (Figure 1(b)). We seek to minimise back-
projection error for our reconstructed vertices according to the following criteria:

33l -7

An initial guess at camera external parameters R, and T,, and scene structure Xj is

determined using an approach similar to that suggested in [7] according to the following
algorithm:

1. Choose two views with known camera calibration K,. Without loss of

generality, we may arbitrarily assign the first of these two viewpoints to be the
origin of our world co-ordinate system with projection matrix K, [[ | 0] .

2. Compute an essential matrix for the two views using feature correspondences
(see [9]). Decompose the essential matrix into R and T, which provide the
projection matrix for the second view. Compute an initial guess at (partial) 3D
structure by triangulation (see [10]).

3. Bundle adjust the partial reconstruction to improve projection matrix and
structure estimates according to (5). The bundle adjustment strategy we use is
based on that described in [8] although we use the Levenberg-Marquardt
optimisation technique and additionally optimise some camera intrinsic
parameters.

4. Repeat for each remaining view:
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i. Determine an approximate projection matrix for the view using the direct
linear transformation (DLT) method described in [11]. The new viewpoint
allows more scene structure to be determined.

ii. Bundle adjust the partial reconstruction to refine projection matrix and
structure estimates.

In practice, inaccurate and few feature matches mean that the order in which
remaining views are integrated in step 4(i) is critical since some views may be relatively
more ‘degenerate’ than others. Degeneracy occurs, for example, (i) where all vertices lie
on a plane parallel with the image plane, or (ii) where features are concentrated in a
small part of the image. By solving the DLT using the singular value decomposition, we
obtain a good guide to the degeneracy of the solution. Integrating views in order of the
number of features already reconstructed is not, in general, a good strategy. We have
found that integrating views in a ‘most degenerate last’ order means the reconstruction
algorithm converges more quickly in the presence of noise.

2.3 Constrained reconstruction

Some scenes exhibit significant orthogonality and parallelism and in some cases it may
be desirable to apply these constraints to the resulting 3D model. Constraints reduce the
sensitivity of a model to inaccuracy in the feature correspondences that define its
vertices. Furthermore, constraints allow single-view reconstruction and reconstruction
of ‘hidden’ vertices that are not visible in the image but can be inferred from knowledge
of parallelism and orthogonality.

Our approach to constraint application is an extension to [2]. This approach uses
parallel lines defined in the image plane to determine camera pose, plane orientations,
and line directions. This allows linear solution for constrained 3D structure and camera
position. However, given sufficiently many feature correspondences, camera pose and
position can be estimated more accurately by ray bundle adjustment (see Section 2.2).
‘Best-fit’ plane orientations and line directions are then estimated from 3D structure.

Our constraint application algorithm is as follows:

1. Compute projection matrices and structure from feature correspondences using
bundle adjustment (see 3.2).

2. Group vertices into lines and planes. Group lines and planes with parallel
directions and normals into parallel sets. Group parallel sets into orthogonal sets.

3. Determine a best-fit set of orthogonal directions using the following technique:

i. From 3D structure estimate, determine best-fit directions for each parallel set
using linear least squares.

ii. Group each set of three approximately orthogonal unit direction vectors into a
matrix R.

iii. Find R’ that minimises the Frobenius norm ||R-R'|| subject to the condition
that R' is an orthonormal rotation matrix. This can be simply achieved using
singular value decomposition. Let UWV" be the singular value decomposition
of R. Then R’ is obtained from UW’ V' where W’=diag(1,1,1).

iv. Non-linear optimisation using Levenberg-Marquardt.

4. Compute constrained reconstruction by linear least squares.






Given best-fit directions my, we estimate scene structure as the solution of a linear
equation. Each model constraint provides additional rows in this equation. Table 1 lists
the constraints that are employed.

Type Constraint n

Image co-ordinate (K'x-R'T)xX =0 2

Line direction (X, =X, )xm, =0 2

Triangle normal (X, -X,)0mn, =0 2
(X; -X,)0m, =0

Known 3D co-ordinate X 3

Tablel: Modelling constraints (n is number of independent equations)

We can formulate all such constraints as a linear equation:

AX=b )
where X is a vector comprising the unknown vertex co-ordinates X;. We may optionally
give different constraints different weights within this matrix equation. In practice, we
weight the line direction and triangle normal constraints about 10 times higher than the
others to ensure square-looking models. Solution is possible via a variety of sparse
matrix techniques (or for less than about 200 vertices) by singular value decomposition.

3 Implementation

We have developed a complete, interactive 3D modelling system (‘PhotoBuilder’) based
on the framework described in Section 2. This system allows the user to define by hand
image features corresponding to significant geometric vertices in the scene. Pairs of
vertices may be joined with lines and triplets of vertices may be grouped to make
triangles; these will form the basis of a texture-mapped wire-frame model. Lines and
triangles may be grouped into parallel sets, which, in turn may be grouped into
orthogonal sets. Optionally, this information is used as a basis for constrained
reconstruction (see Section 2.3).

Two additional improvements significantly reduce the time taken to build models:
(i) an automatic matching and wire-frame triangulation tool (Section 3.1), and (ii) a
guided matching tool used to detect and match extra features automatically. This allows
improved estimation of projection matrices (Section 3.2).

3.1 Automatic matching and wire-frame triangulation

User interaction considerably simplifies the problem of 3D modelling. However, large-
scale, by-hand feature detection and matching is unreliable, inaccurate, and slow. From
an initialisation of a few feature matches identified by hand, our system can determine
remaining feature matches and wire-frame triangulation automatically.

Around 10-15 matches are sufficient to allow us to estimate projection matrices
using the method described in Section 2.2. Given these estimates, the task is to choose
remaining feature matches and wire-frame triangulation such that the resulting model
will ‘agree’ well with image data. This is framed as a search problem. Correctly
matched triangles should be warped by an homography from view to view (see
Figure 2).

This search is significantly constrained by the knowledge that feature matches must
lie on the epipolar line and that triangles of texture will not overlap. Nevertheless, the
search space is still large since there are "C; ways of choosing a candidate triangle from
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n candidate vertices. We limit the problem by allowing the user to assign a maximum of
20 or so features at a time for matching and triangulation. Multi-resolution comparison
is used: the majority of possible triangle matches can be ruled out quickly by low
resolution comparison. Higher resolution comparison is only used when triangle
matches cannot be ruled out at lower resolution. In practice, our system can match 20 or
so triangles quite reliably in a few seconds.

(b)

(c) (d)

Figure 2: Texture is projected onto two candidate triangles from two different
viewpoints. The first triangle (a,b) does not lie on a plane in the scene and thus
projected texture is highly viewpoint dependent. The second triangle (c,d) does lie on a
plane surface. RMS pixel intensity errors are (a,b) 52 and (c,d) 34.

3.2 Guided matching

For a given amount of measurement noise, a larger number of feature correspondences
gives a more accurate estimate of projection matrices and scene structure. To reduce the
amount of time that the user spends identifying feature correspondences by hand, our
system detects some feature correspondences automatically. Using a coarse model of
the scene (in the form of a texture mapped wire-frame), we can use guided matching to
detect extra matches for features lying on (or near to) the surface of the model.

The system uses the corner detector described in [12] to detect strong corner features
lying within a matched triangle in two images. Since the triangle should correspond to a
plane in the scene, our knowledge of projection matrices and structure allows us to
estimate the mapping between points lying within the triangle in the two images. In
practice, not all features will be matched since uncertainty in the estimate means there
may be more than one possible match for each. Therefore we only use those features
that can be matched unambiguously (see Figure 3).
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(c) (d)
Figure 3: (a,b) Two images with 10 feature correspondences and four triangles, (c,d)
23 extra feature correspondences generated automatically using guided matching.

4 Evaluation

Experiments have been conducted using photographs of a large variety of architectural
scenes. Figure 1 shows two out of a set of eight photographs of Downing College
Library obtained using an Olympus digital camera. An initial guess for camera
calibration was obtained using three sets of parallel lines. Calibration parameters for all
the images in the set were then determined accurately by bundle adjustment. Figure 3(a)
shows the resulting 3D model.

5 Conclusions

We have presented a method for obtaining geometric scene models from uncalibrated
images obtained from a sparse set of viewpoints. Our working, interactive modelling
system uses automation to considerably reduce the amount of user intervention required
to build models and to improve the accuracy of projection matrix estimates. In addition,
the system provides an effective constraint application strategy for use where there is
significant prior knowledge of orthogonality and parallelism.
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Figure 3: 3D models output in VRML format and viewed from new viewpoints. These
models were reconstructed using constraints to ensure square corners and to allow
reconstruction of points visible in only one image (e.g. the ground plane).

BMVC2000






BMVC2000

References

(1]

(2]

(5]

[6]

(8]
[9]

P.E. Debevec, C.J. Taylor, and J. Malik. Modelling and Rendering Architecture
from Photographs: A Hybrid Geometry- and Image-Based Approach. In A CM
Computer Graphics (Proceedings SIGGRAPH), pages 11-20, 1996.

H-Y. Shum, M. Han, and R. Szeliski. Interactive Construction of 3D Models from
Panoramic Mosaics. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pages 427-433, Santa Barbara, (June) 1998.

P. Beardsley, P. Torr, and A. Zisserman. 3D Model Acquisition from Extended
Image Sequences. In Proc. 4th European Conf. on Computer Vision, Cambridge
(April 1996); LNCS 1065, volume II, pages 683-695, Springer-Verlag, 1996.

P. F. Sturm and S. J. Maybank. 4 Method for Interactive 3D Reconstruction of
Piecewise Planar Objects from Single Images, In Proc. British Machine Vision
Conf., volume I, pages 265-274, 1999.

M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric
reconstruction in spite of varying and unknown internal camera parameters. In
Proc. 6th Int. Conf. on Computer Vision, Mumbai, India, 1998.

R. Cipolla, T. Drummond and D. Robertson. Camera calibration from vanishing
points in images of architectural scenes, In Proc. British Machine Vision Conf.,
volume II, pages 382-392, 1999.

R.I. Hartley. Euclidian reconstruction from uncalibrated views. In J.L. Mundy, A.
Zisserman, and D. Forsythe, editors, Applications of Invariance in Computer
Vision, volume 825 of Lecture notes in Computer Science, pages 237-256,
Springer-Verlag, 1994.

C.Slama. Manual of Photogrammetry. American Society of Photogrammetry, Falls
Church, VA, USA, 4th edition, 1980.

R.I. Hartley. In defence of the 8-point algorithm. In Proc. International Conference
on Computer Vision, pages 1064-1070,1995.

[10] R.I. Hartley and P. Sturm. Triangulation. In American Image Understanding

Workshop, pages 957-966, 1994,

[11] LE. Sutherland. Three dimensional data input by tablet. Proceedings of IEEE, Vol

62, No. 4:453-461, April 1974.

[12] C.J. Harris and M. Stephens. 4 combined corner and edge detector. In Alvey

Vision Conf., pages 147-151, 1988.






