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Abstract

This paper presents a framework for directly addressing issues arising
from self-occlusions and ambiguities due to the lack of depth information
in vector-based representations. Visual data directly observed from an image
are used to indirectly recover the parameters of an underlying dynamic model
of an articulated object. The proposed framework allows us to learn the am-
biguities of a representation from training examples. The resulting model
is then used to measure the ambiguities of each estimated underlying model
parameter given the available visual information. This provides an indication
of how much we can “trust” the visual data for estimating certain parts of
the model. We then provide a working example of multi-view data fusion for
tracking 3D skeletons of articulated objects in a multi-camera environment.

1 Introduction

Ambiguities are a constant cause of many problems in computer vision. It is especially
true in tracking 3D articulated objects. In this work, we are interested in recovering the
parameters of an underlying 3D articulated object from measurable 2D features in visual
images. Examples includes location and orientation for the different parts of a 3D object.
In general, 3D model parameters cannot be obtained directly from inputimages. However,
we know that a 3D object does generate certain visual features whithe measured
directly from an input image (e.qg. its shape information given by edges). Therefore, the
task is to recover the underlying 3D object’s data using measurable visual features.

However, the lack of depth information in visual images can cause serious problems.
One problem is that of self occlusion where parts of an object are obscured by other parts,
causing important visual features to be lost. Another problem lies in the inadequacy of 2D
projections to uniquely represent 3D objects at certain poses, whereby the underlying 3D
model at different poses generates very similar visual features. The aim of this paper is to
address these problems by proposing a method to learn quantitatively when certain parts
of the underlying 3D model cannot be accurately recovered from the visual information
available images.

A common method for handling ambiguous information and self-occlusion is to use
multiple cameras. This approach is popular in tracking articulated 3D objects such as
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human bodies [5, 1]. The freedom for various parts of the human body to assume a great
many poses increases the occurrence of self-occlusions and ambiguous poses. However,
ambiguities caused by lack of depth information are generally not computed explicitly but
indirectly handled by camera calibration along with 3D model fitting [10, 4, 8, 3]. The
calibration process provides a mechanism for transforming a model consistently between
different camera views. The ambiguities in model estimation are minimised by the fitting
process since it considers information from all views. An alternative approach is given in

[7] where a 3D human model’s projection is used to calculate the visibility of a body part.
The view from which the body part is most visible is used assuming it contains the least
ambiguous visual information.

In the rest of this paper, Section 2 introduces a hybrid-vector approach to recover the
underlying 3D model's parameters and provides a definition of what constitutes an am-
biguous hybrid vector which can lead to unreliable estimation of 3D model parameters.
Section 3 then details a framework for learning the ambiguities of each inferred compo-
nent (3D skeleton joint angles in this context) given a set of measurable data. We also
present a method for estimating the ambiguities of a novel hybrid-vectors using the am-
biguity model in Section 3.3. A working example of tracking 3D skeletons models of
articulated objects (e.g. human bodies or hands) using multiple camera views is given
in Section 4. The learnt ambiguities are then used to aid the fusion of 3D skeleton esti-
mations from individual views, yielding a more accurate overall 3D skeleton estimation.
Preliminary results on the experiments are also given. Finally we conclude in Section 5.

2 Measuring Ambiguities in Vector-Based
Representations

We would like to infer indirectly the parameters of an underlying 3D model using only
visual features extracted from an image. One approach to achieve this is to combine
both the visual feature components and its underlying 3D model parameters into a high
dimensionahybrid-vectorepresentation [2, 9].

Formally, we define 4) different types of visual feature@ry,...,v4) asmeasur-
able data because it can be directly extracted from an input image. The vegtor,
with »; number of components contains information on the visual feature it represents:
vi = {vi1,...,0;4, }. FOr example ifv; represents a point distribution model (PDM)
of a contour, its components would consists of tley) coordinates of its points. We
then concatenate all the visual vectors’ contents intoeasurement-dateector,w =
{'Ul,la "t ULul ) UA,la "t UA,uA }

Next we define thdridden-datavector m) for storing the 8) underlying 3D model
parametersm = {m, ..., mp}. Finally, we define the hybrid vectdy) as the concate-
nation of the measurements-data along with its corresponding hiddenydatéaw, x).

A constraint model (volume or surface) can be constructed to capture valid instances
of the measurable data (visual features) and its corresponding underlying 3D model com-
ponents. Recovering the missing 3D model data given only input visual features can be
achieved by finding the point on the constraint model whose visual feature components
are closest to the given input data. This yields a vector which contains visual features clos-
est to those recovered from the input image while containing the corresponding “hidden”
3D model’'s parameters.
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Figure 1:A simple illustration of model ambiguity situation. Here, we wish to recover the “hidden”
rotation angle ) of the box. However, the only measurable component on the box is the corner
with the circle. Moreover, the box can only be at 4 discretpositions. This is shown on the

top part of the figure. We can represent this system with a 2D hybrid vecté).( The bottom

part shows the constraint model: a set of points representing valid instances of the box parameters.
In the unambiguous case on the left, given a novel “invalid” hybrid vector as indicated by the
black square, we move it to the point on the constraint model with: thedue closest to the novel
vector'sx value. However, when it is possible for the box to assume two different poses at the
same position, as shown on the right, ambiguities occur. We no longer know to which point on the
constraint surface should the novel hybrid vector be moved to.

Ambiguous and self-occluded visual features can cause multiple points on the con-
straint surface and have measurement-data equally similar to those extracted from the
input image, but each with significantly different corresponding hidden-data components
[9]. As aresult, itis not possible to decide which 3D model parameters can be selected for
the given visual features. A simple example illustrating this can be seen in Fig. 1. In other
words, a hybrid vector has ambiguous measurable components when there exists many
hybrid vectors with similar measurable components but dis-similar inferred components.
In the next section, we describe a method to quantify this problem through learning.

3 Learning the Ambiguities

Having defined the characteristics of a hybrid-vector example with ambiguous measure-
ments, we now introduce a two step method for learning the ambiguities of this hybrid
representation: (1) Extracting the ambiguities of the visual feature components of the
training data (Section 3.1). (2) Modelling the ambiguity values (Section 3.2).
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Figure 2:An overview diagram of the ambiguities extraction method described in Section 3.1

3.1 Extracting the Ambiguities from Training Data

Here we describe a method for extracting the ambiguity values for each hidden com-
ponents of the representation using its corresponding measurement components. As il-
lustrated in the diagram given in Fig. 2, the method consists of two components; the
measurements similarity functi@md thehidden components ambiguity function
We first describe the measurements similarity functions. As defined in Section 2, the
measurement vector consists of a numbégr ¢f visual feature vectorsv(, ..., v4). In
order to compare two sets of visual features, we introduce a set of funcfigns, (f4)
for measuring the similarities between two instances of a set p¥isual features. The
ith visual feature similarity functionf; (v}, v?)) is a mappingf : R% x R% — {0, 1},
whereu; is the number of componentsin. This mapping is responsible for comparing
two visual feature instances(, v?). This similarity function depends on the visual fea-
tures being compared. Each function returns 1 when the visual feature instapoe?) (
being compared are deemed similar and O if not similar enough. An example can be seen
in Section 4 for comparing the similarities of an articulated object’s silhoutte contours.
These individual visual feature similarity functions together defimeeamsurement-
similarity function

Fw',w?) =[] £}, v}) (1)






BMVC2000

where thea!® measurement vector is definedwd = (v¢,...,v¢) anda € {1,2}. F
returns 1 if all visual features in two instances of the measurement vector are similar
enough.

We now describe the second function responsible for measuring the ambiguities of
the hidden components given the measurements. In the case where the measurements are
similar, as determined by;, we check for significant differences between its correspond-
ing hidden componentsc{,x?). To do this, we introduce a functiof(x',x?) where
G : RP x RP — RP. This function provides a vector which indicates to what degree
each of the hidden components differ from one another, given the corresponding mea-
surementsw!, w?). Functiong, depends on what the hidden components represent. An
example of this function is given in Section 4 for comparing two instances of 3D skeleton
joint angles and determining to what degree they differ and thus to what degree they are
ambiguous.

Now, we introduce an algorithm for extracting the hidden components’ ambiguity
values from the examples in a set/ftraining hybrid-vector${y!,...,yV }).

Initialisation Step
- Make N number ofB-dimensional vectors{¢, ..., ¢ }) for storing the ambiguity
values for the hidden-data components for each training example.
- Initialise all the components ef. to 0, wherec € {0, ..., N'}.

Ambiguities Extraction Loop
- For each training exampie® = (w*,x%), wherea € {1, ..., N},
- For each of the other training examplgé,= (w?, z°),
whereb € {1,...,b—-1,b+1,..., N},
-if( F(w®, wb) == 1),
- Evaluate ambiguity valugs) between hidden components, andx?,
y = g(xa, Xb)
- Update the ambiguity values for example
Ca,j =Yj,f y; > cq 4, Wherej € {1,..., B}

This extraction process results in a set of vectors containing the ambiguity measures for
the hidden components in each example. Having associated all the training data with their
appropriate ambiguity measures, we next describe a method for modelling such ambigui-
ties and labelling novel visual measurements.

3.2 Modelling the Ambiguities

Having extracted the ambiguities from the training data as described above, let us now
construct a new “ambiguity training sef{d,, ...,dx}. We replace the hidden compo-
nents k;) in each training exampléy;) with its corresponding ambiguity vecto;{;

d; = (wy,c;). The resulting training example is defined asnagasurement-ambiguity
vector We then model the space taken up by the measurement-ambiguity training ex-
amples using Hierarchical Principal Components Analysis (HPCA) [6]. Spatially, this
results in a hierarchical structure containing a set of global eigenvectors spanning the
subspace of the training data. We define the subspace modelled by the global eigenvec-
tors as thegglobal eigenspacelocalised clusters are then used to account for potential
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non-linear structures in the training data within the global eigenspace. Conceptually, the
HPCA structure captures known valid examples while allowing for in-between-example

generalisations to take place. Additionally, it inherently models the correlations between
visual measurements and the ambiguity values of its corresponding hidden components.

3.3 Estimating Ambiguities of Novel Hybrid Vectors

We can now use the HPCA model to estimate the ambiguities of a novel hybrid vector
captured from visual input similar to [6, 2, 9]. We extract the visual measurements before
forming a potentially “invalid” measurement-ambiguity vector defined above, by concate-
nating either a zero vector or a previously estimated ambiguity vector to the end of the
measurement vector.

We project this new ambiguity vector into the global eigenspace, effectively reducing
its dimensionality. In the global eigenspace, we determine whether this dimensionality-
reduced ambiguity vector falls inside one of the clusters by projecting it onto the principal
components of the clusters. It is contained within a cluster if all the projections are less
than the eigenvalues of the principal components’. If true, do nothing.

However, if the projection lies outside all the clusters, we first locate its nearest cluster
using Euclidean distance. The projected ambiguity vector is moved into the closest cluster
by projecting onto the cluster’s principal components. The magnitudes of all projections
are limited to fall within the eigenvector’s corresponding eigenvalue. Secondly, we obtain
the newly moved projected ambiguity vector by taking a linear combination of the clus-
ter's principal components, with the eigenvalue-limited projections being the coefficients.
This will provide us with a vector which has valid ambiguity values for corresponding
measurements which are closest to that of the novel hybrid vector.

4 Application: Tracking 3D Skeleton Models using
Multiple Views

We adopt a hybrid representation consisting of a combination of measurable 2D image
features together with the underlying 3D model parameters for tracking 3D skeletons
[2, 9]. Here, the 2D image features used are PDMs for representing the object’s contour.
Following the terminology introduced in Section 2, we have a set of visual feature vectors,
vy (i.e. A = 1). These vectors represent the visual measurements which can be directly
extracted from the image.

We define the PDM of the object’s silhoutte contour to be a vestor¢ontaining the
coordinates of a numbet{) of evenly distributed 2D points:; = (1, ¥1, ., Tuy > Yuy )-

We define the hidden components vectortp contair2us joint angles for a 3D skele-
ton with u» number of jointsx = (61, ¢1, ..., 0., $u, ). Each joint contains two angles,

# and ¢, which represents the angles of the joint off its logadnd z axes respectively
(see Fig 3).

However, self occlusions together with the lack of depth information can give rise
to situations where very similar contours can correspond to significantly different 3D
skeletons. Therefore, to increase the tracking robustness, the ambiguity model defined in
Section 3.2 is used as a mechanism for a multiple camera setup. The ambiguity model
can allow us to measure the potential accuracy of each component of the estimated 3D
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Figure 3:An illustration of the 3D skeleton joint angleg,and¢ in the local ¢, y, z) coordinate
system of a joint.

skeleton in each view. Consequently, a more accurate 3D skeleton can be found by using
the least ambiguous estimation for each of its components.

In order to use the framework for learning the ambiguities described in the previ-
ous section, let us now define the similarity function for the measurable data (2D com-
ponents) of the hybrid vector (Section 4.1) and the ambiguity function for the hidden
components, i.e. the underlying 3D skeleton’s joint angles (Section 4.2). Finally, we
introduce a method for using the ambiguity model to estimate the least ambiguous 3D
skeleton, where each view contributes the least ambiguous estimations (Section 4.3).

4.1 Similarity Functions for 2D Measurements

We now define the similarity functions for the hybrid representation’s two measurable-
data sub-group: the body contour. Given two PDMs representing the body contpurs,
andv?, both vectors havinBu; number of components (i.e; number of 2D points), we
define the similarity function as a sum of distances between all the corresponding points
throughout the entire contour:

1 ifdi(vi,v}) <t
fivivi) { 0 othze(rwlisel) - )
2
di(a,b) = Y ur/(asi = b20)? + (a2i41 — b2ig1)? @)
i=1

wherea = (ay, ..., a2y, ), b = (b1, ..., bay, ) and the preset value)(represents how close
all the corresponding points on two contours must be before they are considered similar.

4.2  Ambiguity Function for the Skeleton Joint Angles

Given two joint angles of an articulated object’s 3D skeleton, we define them to be similar
if they are both within a preset rangg) (of each other. This preset range determines the
coarseness of the 3D skeleton’s joint angles estimation. Formally, the similarity function
for comparing two corresponding 3D skeleton joint angles sétandx?, is given as

g(XhX?) = (d3($%,$%),,d3($}3,$%)) (4)
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. |91—02| if01+’}/>02>91—’)/
ds(01,02) = { 0 otherwise (5)

where x! = (z},...,z}), x

two skeletons compared.

= (z1,...,2%) and B is the number of joint angles of the

4.3 Tracking 3D Skeletons in Multiple Views

We perform tracking of the 3D skeletons using the framework described in [9]. Each
view provides a viewpoint invariant estimation of the current 3D skeleton. Additionally,
we estimate the associated ambiguities for each 3D skeleton component given its asso-
ciated 2D measurements for each view. To do this, we form a vector consisting of the
2D measurements and the ambiguity vector of the previous time-step for that view. We
then use the ambiguity model described in Section 3.2 to recover the correct associated
ambiguities, as described in Section 3.3. Consequently, for each view, we have both the
3D skeleton’s estimation along with the ambiguity values for each of its estimated com-
ponents. To form the least ambiguous (and therefore most reliable) skeleton estimation,
for each of its components, we use the estimation from the view which has the smallest
ambiguity value.

4.4 Experiments

For our experiments, we have chosen the hand as the object of interest. A training set
of 450 hand images at different poses was acquired. A PDM with 50 points was chosen
to represent the hand contour. The corresponding underlying 3D skeleton of the hand
was then obtained manually. Next, the joint angles of each skeleton were recovered. The
algorithm described in Section 3.1 was then used to recover the ambiguities of the joint
angles of each training example. Preliminary results on labelling the 3D skeletons with
the ambiguity measurements are shown in Fig.4. Here, we show hand poses at three lev-
els of ambiguities; unambiguous poses, partially ambiguous poses and highly ambiguous
poses. The first type consists of hand poses whose corresponding contour is uniquely
associated with only one skeleton configuration. Next, the partially ambiguous hand pose
is one whose corresponding contour can bring about ambiguous angle estimations for
certain joints while unambiguous angle estimations for other joints. Finally, the highly
ambiguous hand pose is one whose contour can be associated with many skeleton config-
urations with very different joint angle configurations across all the different finger joints

of a hand. This makes the joint angle estimation highly ambiguous.

5 Conclusion

In this paper, we formally addressed quantitatively the general problem of ambiguities in
using 2D visual data for recovering underlying 3D model parameters. To this end, we pro-
posed a framework for learning the ambiguities of hybrid-vector representations, whereby
measurable data and “hidden-data” (i.e. model parameters) are combined together. Thisis
achieved by extracting ambiguities of the hybrid-vector’s hidden components given their
corresponding visual measurements. The computation is based on a definition that model
ambiguities are measured by the degree of which similar measurable components (e.g.
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visual features) give rise to significantly dis-similar underlying model parameters. We
then model the ambiguity values of the underlying model parameters using HPCA, allow-
ing a novel hybrid-vector to have its underlying parameter’s ambiguity values estimated
guantitatively.

We have described an example of applying this framework to learning the ambiguity
model for 3D hand skeletons inferred using 2D contours. This can then be used in a
multi-camera setup to fuse estimated 3D skeletons from different views. Here, the 3D
skeletons are estimated using each view's 2D visual measurements. The ambiguities of
the resulting 3D skeleton estimations are computed. A more robust 3D skeleton is found,
whereby each of its components is the result of the least ambiguous estimation.
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Figure 4: This figure shows different levels of ambiguous poses of a hand. The top left image
shows the index for the joints of the skeleton along with the location of a joint's ambiguity mea-
surements display box. For each hand pose, the input image is shown on the top, the PDM contour
on the middle and the joint angle ambiguity measure is shown in the two rows of boxes below the
contour. The top and bottom row of boxes indicate the ambiguities for the joint arglesndp)
respectively. In each box, the angle ambiguity magnitude is shown as a filled arc (e.g. a quarter
circle indicates the existence of other hand poses with similar contours but a different corresponding
joint angle, where the magnitude of the angle variation is 90 degrees). The images on the top right
shows hand poses which are unambiguous. The middle row shows partially ambiguous hand poses.
The bottom row shows hand poses which will provide highly ambiguous and unreliable contours.






