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Abstract

We consider the problem of representing sets of 3D points in the context
of 3D reconstruction from point matches. We present a new representation
for sets of 3D points, which is general, compact and expressive : any set of
points can be represented; geometric relations that are often present in man-
made scenes, such as coplanarity, alignment and orthogonality, are explicitly
expressed. In essence, we propose to define each 3D point by three inde-
pendent linear constraints that it verifies, and exploit the fact that coplanar
points verify a common constraint. We show how to use the dual represen-
tation in Maximum Likelihood estimation, and that it substantially improves
the precision of 3D reconstruction.

1 Introduction

We present a new representation for sets of 3D points and show that this representation
is relevant to the problem of 3D reconstruction from point matches. In this problem[4],
the input data is a collection of pixel coordinates taken from a sequence of three or more
images. These are obtained by tracking along the sequence the projections in the images
of 3D points which we wish to recover. The desired output is

1. The coordinates of the 3D points,

2. The positions of the cameras

3. Some characteristics (intrinsic parameters) of the camera.

Figure 1 illustrates the problem of 3D reconstruction as considered in the present
work. Most methods published to day represent the reconstructed points by their coor-
dinates in a given basis. No particular geometric relation is recognized between the re-
constructed points. In man-made scenes, which are a common and important special case
for reconstruction, there exist geometric properties such as coplanarities, parallelism, or-
thogonality. The representation of 3D points that we propose explicitly describes these
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Figure 1: The problem of 3D reconstruction.

relations. Other work [1, 11, 10] has shown that these relations can be exploited to im-
prove the reconstruction. In [1], geometric properties, known beforehand, are expressed
by using polynomial constraints. In contrast, we use only linear constraints to represent
3D points, and bilinear restrictions to constrain the “directions” (see Section 2.1) used in
our representation.

Szeliski and Torr [11] show how various geometric constraints can influence the pre-
cision of 3D reconstruction. Like us, they use parallelism and orthogonality constraints.
In their work, a collection of techniques are presented, and their output is compared on a
series of data set. In comparison, we limit ourselves to Maximum Likelihood estimators.
The reason for our choice is multiple : first, we can argue that these estimators give “the
best” estimates, in a precise probabilistic meaning [5]. Second, the error committed can
be characterized [8, 7] : we know both the estimate and the covariance of the estimator
that produced it.

A fundamental difference between [1, 11, 10] and this paper lies in the use of a
scheme, the “dual representation”, for representing a set of 3D points together with its
properties. In [1], points are represented by their coordinates, and constraints are im-
posed in the estimation process. In [11] and [10], computation steps are inserted to the
process of estimation, in accordance to the known geometric properties.

In the present work, points are represented together with their properties, or rather,
by their properties. Because we explicitly represent only properties, and some geometric
properties may be shared by many points, the number of parameters needed in the rep-
resentation is often smaller than in the equivalent coordinate-based representation. Sets
of 3D points are obtained from a vector of real parameters. Because this mapping is
differentiable (Section 2.1), it can be used within an optimization scheme such as ML
estimation.

1.1 Representation

In the context of shape-from-X, many representations of shape have been proposed : 2-
and-1/2-D, voxels, generalized cylinders [3], CAD-like parametric models[9] and cer-
tainly many others. In the spirit of Grenander [6], we build our model from building






blocks, which in our case are linear constraints. Contrarily to what is usually the case,
each building block does not represent one or more points, but rathera propertyof some
points. Each point is defined by three building blocks.

Using a single orthogonal basis provides some mathematical as well as algorithmic
simplifications, but by doing so, some interesting geometric properties, such as copla-
narity, parallelism and alignment, are occluded.

It is well known that a 3D pointx is defined by any three independent linear con-
straints of the formvi = f�i (x) where thef�i are independent linear function fromR3 to
R; that is, thef� are elements in the dual space ofR3. The dual space [2] ofR3 is the
vectorial space of linear functions fromR3 toR. Its elements can be identified with points
of R3 because any functionf� in it can be defined byf�(x) = f>x for somef 2 R3.

If some points, represented in such a way, have a linear constraint in common, they
are necessarily coplanar. If they have two constraints in common, they are aligned. If the
pointsx of a set verifyf�(x) = v while pointsx0 of another set verifyf�(x0) = v0, then
these sets belong to parallel planes. If moreover both sets verify a common constraint
g�(x) = g�(x0) = w, then these sets belong to parallel lines. By continuing in this way,
it is easy to represent grids of points. Our building blocks, linear constraints, combine
in a simple way to express explicitly geometric relations. We call this representation the
“Dual Representation”because it is based on elements of the dual space ofR3.

To obtain a dual representation, one must first associate a set of 3D points to a number
of meaningful constraints (planarities). In this paper, like in [1, 11, 10] , we assume that
these geometric relations are known a-priori, and concentrate primarily on the framework
of estimation theory.

Automatically determining from the data the “interesting” geometric properties is a
separate problem that wedo not address in this article. This problem is of course of
great importance : specifying by hand the coplanarity and orthogonality relations is not
very practical. We are currently working on automatic methods, preliminary results being
available in the experimental (3) section.

A formal definition is given in Section 2, where relations of orthogonality are taken
into account. We also show how how to use this representation in Maximum Likelihood
estimation. In Section 3, it is shown that the dual representation can improve the precision
of 3D reconstruction obtained from matched points.

2 Dual Representation

In this section, we define the dual representation (DR), give some examples of DR’s and
show how a DR can be integrated in an optimization problem over sets of points. We use
the convention that boldface letters, like “x”, represent points inR3 (“3D points”) and
normal letters, like “v”, will represent scalars or collections of objects. Adopting matrix
notation, 3D points will be identified with 3-by-1 matrices.






2.1 Definition

A dual representationfor the setx = (x1; : : : ;xP ) of points inR3 is given by a quintuplet
� = (d; v; Æ; �;
) consisting of :

1. Thedirectionsd = (d1; : : : ;dD) of R3 where8i kdik = 1 .

2. Thevaluesv = (v1; : : : ; vV ) in R.

3. Thedirection indicesÆ = (Æ11; Æ21; Æ31; Æ12; : : : ; Æ1P ; Æ2P ; Æ3P ) where theÆip are
natural numbers in1 : : :D.

4. Thevalue indices� = (�11; �21; �31; �12; : : : ; �1P ; �2P ; �3P ) where the�ip are
natural numbers in1 : : : V .

5. Theorthogonality constraints,
 = (
1; : : : ;
D). Each directiondi is constrained
to be orthogonal to all the (at most two)d!ij

, where!ij 2 
i .

Each pointxp is unambiguously defined by :

2
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;

where it is assumed thatMp is not singular1. The indicesÆip and�ip select which direc-
tions and values are used in the definition of the pointxp

2. Thus a dual representation
consists of a discrete part,Æ and�, which we shall call the“shape” of �, and a con-
tinuous part,d andv, its “parameters”. We will usex(�) to represent the points inR3

defined by�.
FindingÆ and�, the “shape”, consists in associating 3D points to planes. In the con-

text of this paper, we assume that the “shape” terms have been determined a-priori, so that
we can focus on the “parameter” estimation. We are currently developing automatic meth-
ods to extract the shape components (i.e. finding the most adequate planarity constraints
from the data points) and preliminary results can be found in Section 3.

When counting the number of parameters used in a dual representation, we count2
parameters per direction, because of the restriction on the norm of thedi; one parameter is
counted for each valuevi. When speaking ofdirections,we will always mean unit vectors.
A constraintof the dual representation is any pair(di; vj), or equivalently(i; j) such that
at least one point inx(�) is defined from, amongst others, the relationd>i xp = vj .
The set of points using the constraint(i; j) in its definition is called thesupportof that
constraint. The vocabulary we just defined is sufficient to express ourselves clearly in the
rest of this article. It can be extended and formulated mathematically.

1If Mp is singular, then the dual representation is badly formed.
2These clumsy indices are necessary for the rigorous definition of dual representations. We shall avoid using

them when possible, and introduce some vocabulary to that effect.






Example of a “Trivial” dual representation : A possible DR forx is

1. d =
�
d1 = [1; 0; 0]> = e1; d2 = [0; 1; 0]> = e2; d3 = [0; 0; 1]> = e3

�
. The di-

rections defined by the canonic basis ofR3.

2. v = (x11; x21; x31; x12; : : : ; x3P ). All the coordinates of the 3D points. Note that
v3p+i�3 = xip for all 1 � i � 3 and1 � p � P .

3. Æip = i.

4. �ip = 3p+ i� 3 .

One easily verifies that this DR defines the 3D pointsx. In all, 3P + 6 parameters are
used,3P for the valuesv and6 for the three directions (two for each, since they have unit
norm).

Representation of planar points : We now assume all points inx lie in the same plane:
there exist a directionf and real numberv1 such that for allp, the relationf>xp = v1
holds. We assume without loss of generality thatf =2 fe2; e3g. A DR for x is be given
by:

1. d = (d1 = f ; d2 = e2; d3 = e3).

2. v = (v1; x21; x31; x22; x32 : : : ; x3P ).

3. Æip = i.

4. �1;p = 1; �2;p = 2p and�3;p = 2p+ 1 .

This DR uses2P + 6 + 1 parameters, to be compared with the3P that are used when
representing thexp by their coordinates in a given basis.

Points on two parallel planes : We now assume that points inx lie in one of two
parallel planes : there exist a directionf and real numbersv1 andv2 such that for allp, the
relationf>xp 2 fv1; v2g holds. We assume without loss of generality thatf =2 fe2; e3g
and that there is an indexP1 2 f2; : : : ; Pg such thatf>xp = v1 if p < P1 andf>xp = v2
otherwise. A DR forx is be given by :

1. d = (d1 = f ; d2 = e2; d3 = e3).

2. v = (v1; v2; x21; x31; x22; x32 : : : ; x3P ).

3. Æip = i.

4. �1;p = 1 if p < P1 and�1;p = 2 otherwise.�2;p = 2p+ 1 and�3;p = 2p+ 2.

Here,2P +6+2 parameters are used, versus the3P that are used when representing the
xp by their coordinates in a given basis.






Points on parallel lines in a plane : We now assume that points inx lie onQ distinct
parallel lines within a plane. The coplanarity is expressed by the existence of a directionf

and real numberv0 such that for allp, the relationf>xp = v0. Alignment of some points
is expressed by the existence of a directiong 6= f and valuesv01; : : : ; v

0

Q such that for all
p, g>xp 2

�
v01; : : : ; v

0

Q

	
We assume without loss of generality thatf 6= e3 andg 6= e3.

A DR for x is given by :

1. d = (d1 = f ; d2 = g; d3 = e3).

2. v = (v0; v
0
1; : : : ; v

0

Q; x31; x32 : : : ; x3P ).

3. Æip = i.

4. �1;p = 1, �2;p takes values in
�
v01; : : : ; v

0

Q

	
according to the line it lies on.�3;p =

Q+ 1 + p.

In this example, the number of parameters isP +Q+ 6 + 1 .
Based on these examples, one can easily find DRs for points on 2D or 3D grids.

More generally, sets of points which contain subsets verifying coplanarity, parallelism
and alignment relations, as well as their combinations can naturally be represented using
constraints. This representation is compact and explicitly shows coplanarity relations
(points that belong to the support of a common constraint), collinearity (points being
in the support of two common constraints); the fact that points lie on parallel planes is
expressed by points having a direction in common, but different constraints defined for
that direction.

2.2 Application to optimization problems

We now show how to transform a problem in which a functionx �! L(x) is minimized,
into a problem in which(d; v) �! L(x(�)) is minimized. Popular algorithms such

as conjugate gradient, only need to evaluate the functionL and its differential @@xL.
The Levenberg-Marquardt algorithm, which minimizes a function of the formL(x) =

jju � F (x)jj2, only requires the computation ofF and @
@x

F . It is clear that in order

to use one of these algorithms, we need to be able to compute@
@d

L and @
@v

L3 or, for

Levenberg-Marquardt,@@dF and @
@vF . We note that

@
@d

L = @
@x

L � @
@d

x and

@
@v

L = @
@x

L � @
@v

x:

So, if the derivatives with respect tox can be computed, we only need, in order to compute

the derivatives with respect tod andv, to be able to compute@
@v

x and @
@d

x. The first
derivative is trivial. For the second, we must specify a parameterization of a directiondi.

Ommiting the indicei; we calld1; d2; d3 the coordinates ofd. We parameterize each
directiond by three parameters� = (�1; �2; �3) : di = �i=

p
�21 + �22 + �23, and write

3For convenience, we consider in this sectionx; d andv as elements inR3P , R3D andRV . @
@d

x is thus
a3P -by-3D matrix etc.






d = d(�). Note that this representation is redundant and present the advantage of being
non-singular. Within the optimization algorithm, we will enforce the relation�i = di at
each step, by performing reprojection of the parameters. Becausedmust verifyjjdjj = 1,
one easily sees that

@

@�
d = I3 � dd>: (1)

As can be expected, this matrix has rank 2. Ifd is constrained to be orthogonal to another
directiond’ of the dual representation, one has

@

@�
d = I3 � dd> � d0d0

>
: (2)

If d is subject to two orthogonal constraints,d>d0 = d>d00 = 0, one has,

@

@�
d = 0 (3)

Here,d does not depend at all on�, which can be excluded from the optimization prob-
lem.

We also need the derivatives of a directiond that is constrained to be orthogonal to
another directiond0 = d(�0) :

@

@�0
d = �d0d>: (4)

Finally, we need the derivative of the pointx, defined byx = M�1b with respect to
the columns ofM . It is sufficient to give the derivative with respect to theith column of
M , which we calld :

@

@m
x =

�
~d>b

�
M�1; (5)

where~d is theith column ofM�1.
Using equations (1-5) one can easily convert an optimization problem overx into

an optimization problem over(d; v). Clearly, we can convert an optimization problem
over parameters(x; �) into a problem of optimization over(d; v; �); in the case of 3D
reconstruction,� will represent the camera positions and calibration parameters.

3 Experimentation

In this section, we illustrate the compactness of the dual representation and how it im-
proves the precision of 3D reconstruction. Figure 2 (a) shows one of the input images that
were used. Point matches are available, along 12 images, for each of the 48 corners of
the calibration grid. ML estimates of the 3D points were computed, using three different
estimators. Their respective outputs are labeledIC , DRC andDROC:

IC Coordinates of points are estimated independently.

DRC A dual representation models the coplanarities in the scene.

DROC A dual representation models the coplanarities and orthogonalities in the
scene.






All estimators use the perspective camera model, with unknown but constant intrinsic
parameters. Five unknown intrinsic parameters are estimated : aspect ratio and skew, the
principal point and the focal length.

Figure 2: (a) First input image (b) A dual representation

Figure 2 (b) shows the dual representation corresponding to the third estimator. The
association of points to planes (constraints) was done automatically by an algorithm that
we do not discuss here. Points are represented as spheres, alignment relations are repre-
sented as cylinders between points and the two main planarity relations are represented
as opaque surfaces. In all, 3 orthogonal directions and 18 values are used : 4 along the
vertical direction, and 7 along each of the horizontal directions. In contrast, 144(=48�3)
values are needed to represent the same set of points by their coordinates.

We estimate the covariance of the three ML estimators using the techniques described
in [8, 7] with the notable difference that we estimate the covariance of the noise of the
observations rather than assume that it is known beforehand.

Table 1 shows the estimated standard deviation of the three considered ML estimators.

Estimator IC DRC DROC
Estimated quantity Scale Standard Deviation of Error

3D Point Coordinates 1 0.0310 0.00715 0.00261
Camera Orientation degrees 0.516 0.271 0.264
Camera Position 7.05 0.778 0.214 0.175
Logarithm of Focal Length 1.5 0.0491 0.0158 0.0135

Table 1: Standard deviation of the Maximum Likelihood estimators. The “Scale” column
contains the mean abs. value of the estimated quantity, except for the “camera orientation”
row, where error is given in degrees.

Table 1 shows that the standard deviation of the dual representation estimators is al-
ways significantly lower than that of the ML estimator of independent point coordinates.
One should also note that the estimation of all parameters, including the orientation of
cameras, their positions and focal length, is improved.

We now present empirical error measures, obtained from synthetic data : a virtual cal-
ibration grid and camera setup was used to produce virtual point matches. Iid. Gaussian






noise was added. The amplitude of the noise was one-hundredth of the mean squared
value of the observations, corresponding to a SNR of 40DB. The value of estimators was
computed from these synthetic observations. This experience was run 50 times. The er-
ror, measured by the difference between the synthetic calibration grid and the output of
the estimators, is shown in Table 2.

Estimator IC DRC DROC
Estimated quantity Scale

p
Mean Squared Error

3D Point Coordinates 1 0.0316 0.0132 0.00409
Camera Orientation degrees 0.458 0.332 0.250
Camera Position 7.05 0.727 0.283 0.195
Logarithm of Focal Length 1.5 0.0516 0.0277 0.0159

Table 2: Empirical mean absolute value of error of the Maximum Likelihood estimators.
The “Scale” column contains the mean abs. value of the estimated quantity, except for the
“camera orientation” row, where error is given in degrees.

Table 2 shows that the error of the dual representation estimators (DRC andDROC)
is significantly lower than that of theIC estimator. This result is in accordance with the re-
sults of [1, 11]. In particular, this confirms the statement, in [11], that using orthogonality
constraints greatly improves the precision.

The theoretical (table 1) and empirical (table 2) error measures clearly agree with each
other.

4 Conclusions and future work

We have presented a representation for 3D points that is simple and expressive. We have
shown how this representation can be used in the framework of ML estimation. The dual
representation intrinsically contains geometric properties that are known to [1, 11] to be
beneficial to the precision. We have confirmed this improvement, both by the theoretical
study of the covariance of the estimators, and by empirical measure of error.

The dual representation could be further improved : relations between the “values”
part of the DR could be identified. Namely, we are interested in recognizing when dis-
tances are equal, and thus further reducing the number of continuous parameters used in
the representation. Also, it may be possible to encode camera positions and orientation.

Automatically associating points to planes is a challenging task. Because 3D points
in the real world are never exactly coplanar, model selection is an important issue. We are
currently working on these problems and plan to address them in a future publication.
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