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Abstract

This paper introduces a highly efficient model for general regression with unknown
error distribution function. The model is derived from a bi-criteria optimisation problem
combining the best properties of least squares and least absolute deviation. The solution
of this problem leads to a robust M-estimator that can be applied in a large range of
computer vision tasks. The technique has been designed to overcome the extreme lack
of robustness and low efficiency observed when conventional approaches are used to
solve fundamental ill-posed computer vision problems. The performance of the method
has been assessed by recovering the 3D-scene structure from stereoscopic images. In
this context, several experiments have been conducted. Some selected results are
reported in this article.

1 Introduction

Fitting a regression curve to observation data is a basic technique used to solve a large
variety of computer vision tasks. Due to the noisy and discrete nature of digitised
images, all low-level image analysis methods developed so far are subject to errors.
Thus, a realistic assumption about the errors in the results obtained by any feature
extractor, motion (correspondence) estimator, object recogniser, etc., must be used. The
most commonly used approach assumes a Gaussian distribution of errors. Under this
assumption the least-squares estimator (LS) achieves optimal results in the sense of
being minimum variance unbiased and maximum likelihood. The problem with this
estimator is its extreme sensitivity to deviations from the Gaussian model. Since outliers
resulting from large observation errors, or noisy cannot be avoid, it is necessary to
consider robust procedures modifying the LS schema. The most known robust
estimators are the class of maximum-likelihood type estimators (M-estimators) and the
median based estimators (repeated median and least median of squares). The last two
belong to the class of robust regressors with the highest possible breakdown point
(50%). The breakdown point is defined as the maximal fraction of outliers the estimator
can deal with [4]. Unfortunately, median based estimators suffers of extremely low
efficiency even if additional strategies are used to reduce the computational cost [12].
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Other robust estimators such as the L-estimator and the R-estimator have been also used
to fit models to data obtained from digital images. Nevertheless, the lack of robustness
and efficiency is the common drawback of these techniques.

In this paper a Parametric Model Fitting estimator (PMF) for general linear regression
is presented. The motivation behind the presented research has been the absence of an
estimator that perform robustly, is easy to handle and has lower algorithmic complexity.
The PMF-model is obtained by using a convex combination of least squares and least
absolute deviation (LAD). A one-parameter quadratic programming model is used to
derive a solution to the problem of fitting a curve to given observation data. The set of
efficient points for such a problem is constructed by solving the linear complementary
problem. In this way a set of linear regressors is generated. One of them is selected by
evaluating the computed coefficients of determination.

The introduced technique is assessed by several experiments in the contex of camera
calibration and structure from stereo. The goal of this task is to recover the camera
location with respect to the scene and to use these parameters to estimate the scene
structure. The 3D structural information can be then used to generate a 3D model of the
original scene [7]. Currently, there exists a large collection of application domains for
these technologies including: medical imaging, augmented reality, immersive
telepresence, etc. Other applications of the PMF-model including motion and disparity
estimation, image segmentation, etc., are envisaged in further developments [5].

2  The Mathematical Model

We consider the classical linear regression model given by y; = x;6, +...+x;,,0,, + e

i =1,...,n where the location parameter © =(6,,...,6,,)" has to be estimated. Usually the

error distribution function F is unknown. Nevertheless, most authors assume that the
error distribution is Gaussian or Laplacian or some fixed combination of both.
Unfortunately, the errors in data obtained from digital images rarely satisfy one of these
assumptions. For this reason a more efficient strategy should focus of the definition of
an estimator which is optimal under both LS and LAD simultaneously. Following this
argument we assume that the true distribution of the errors is some combination of the
standard normal n and the Laplace distribution A . Thus,

Fg=(1-8n+éA,
where ¢ is the degree of contamination of the Gaussian model. In the sequel we assume
that the design variables x; have a marginal distribution P, on the set of Borel sets on

0™ . Furthermore, we suppose that the support of P, is not contained in a plane of

dimension less than m, i.e., the m variables are needed to guarantee the fitting goodness
of the regression curve. The regression distribution is defined as a probability

distribution P on the Borel sets QO™ of O™ If P, satisfies this hypothesis the

corresponding equation belongs to a set S(O™"

) where the regression estimator
p:S(@™Y .0 is defined. 0 OO™" is the regression parameter space, where
0= (61,.4.,9m,02)T =(©,¢)00™ xO™ represent the location and scale parameters to be

estimated. The model is known up to the parameter © .
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According to the arguments stated above we formulate the following bi-criteria
optimisation problem

" el 4 (1)

where |||| , Tepresents the k-norm. This problem represents the search for an estimate

such that there is not a better simultaneously under LS and LAD criteria. The minimiser
is approximately a ML estimator if the distribution of the errors F is adequately
specified. The so stated optimisation problem will not always have a unique solution.
Consequently some compromise between the goodness of both distributions should
provide the selection rule. For this aim, the linear regression model which solves the
corresponding Parametric Quadratic Programming Problem (PQP) is used. The
calculated solution of the PQP will be denoted as "Compromise Estimate" (CE).
Consequently, the parametric objective function that should be considered during the
search for a CE is defined as:

pe)=(1-6)y el +E3 e
= i=1
The bounding condition |e,»| < d 1is imposed to all the residuals, to guarantee that the

corresponding influence function of the estimator also becomes bounded. The defined
M-estimator is not invariant with respect to magnification of the error scale. Thus, a
scale parameter has to be estimated simultaneously. That is, the final cost function
defining the model will be given by

cp(e,c):(l—f)_"g1 +éz|/

Estimating simultaneously © and ¢ is not trivial. Following the classical procedure
introduced by Huber, we use an iteration scheme to solve the underlying problem.

3  Estimation of the Regression Parameters

The complete set of regression parameters are approximated iteratively by alternating
the calculus of the location and scale parameters. The initial approximation of the
location is obtained by solving the LS problem

min 2
o Zl(yz lej j
i=

subject to <90, i=l..n.

m

i = 3 %0,
J=1

Let be ©? the solution of this conventional optimisation problem. The initial scale

estimate is calculated from the sample median of the initial residuals e(o) =y, - z xyejo)

obtained using the initial location parameters: C(O) = med{el(o) e,(lo)}.
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Next, a set of parameters &,...,&; with ¢ I][O,l] for all 7/=1,....k is defined. Without
loss of generality we assume that & <&, <,.,<¢&,. Fixing & =¢&, the following
parametric programming problem is solved

min(1-8)5 &2 +&5 |ei], (2a)
i= i

subject to:

2 e 2 e; (0)
Zx,-jej—c(—o)Sy,-, zlx,jej +W2yl— and eiSC J. (2b)
j:

j=

Let ¢ and @ the solution of (2). A new scale estimate is obtained as
C(l) = med{el(]),...,eill)}.

If the difference ¢ = ‘c(o) —c(')‘ exceeds a prefixed threshold B (e.g., £>B=107%),

(2) is again solved taken ¢V as scale estimate. This iteration is repeated as long as
&> B or a determinate number of iterations has been carried out. At the end of this

iteration process an estimate (©”) ¢(”)) for location and scale is available. Using this

estimate, the determination coefficient XV is calculated using the following formula:

-85 0y =502 +ES |y, - 7]
KO (&) = i:l i:l
(1—5);@,- -9)? +£;1|y,- -7

where )7[ denotes the predicted value of y; and y; the mean of the observations.

The goodness of the estimated parameters is verified by evaluating this coefficient. If
the value of X is not sufficiently close to 1, the whole process is again carried out for
&=¢&,, but taking (@) Py as initial estimates for location and scale. The first
estimator giving a determination coefficient sufficiently close to 1 is selected as
regressor. If all determination coefficients K M K™ are not sufficiently close to 1,
then the estimator with determination coefficient closest to 1 is selected.

To solve the parametric programming problem (2) a standard approach is used.
Basically we want to solve the bi-criteria optimisation problem (1). It is well known that
the set of efficient points of (1) coincides with the set of optimal solutions of the
corresponding parametric programming problem [8]. For & 0 (2) can be written as

. n 2 n
min Y e +T Z|el-| s 3)
i=1 i=1

subject to (2b) and with 7 + %_ g

Using the Karush-Kuhn-Tucker conditions we can fix the structure and properties of
the corresponding linear complementary problem (LCP). Due to the evident convexity
of the objective function, solving (3) is equivalent to obtain the solution of the linear
complementary problem. Simplex techniques are proposed by several authors to solve
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such parameter-dependent LCP tasks [1], [2]. We use the parametric principal pivoting
algorithm proposed by Cottle to solve the LCP. A study about efficiency of this
Simplex-based technique can be found in [2].

4 Using the PMF-Model to Recover the
Epipolar Geometry in StereoVision

Let us assume two perspective images of a rigid scene taken with cameras that can be
accurately approximated by a pin-hole camera model. Let (X,Y,Z) be the 3D
coordinates of a visible point p of the scene in the camera coordinate system, where the

Z-axis coincides with the optical axis, the optical center O lies at the origin and f denotes
the distance between image plane and optical center (see Fig. 1). Let us define the image
coordinate system (u,v), with the origin at the point (0,0,/) with respect to the 3D

camera coordinate system and the image plane coinciding with the plane Z=f. Thus, the
2D projection p of the 3D point p onto the image plane has coordinates p = (u,v) (see

figure 1). The coordinate system used in the computer or in the respective digitized
image will be denoted (x, y). In this coordinate system the principal point (xq,yy) gives

the position of the optical center. The cameras are first calibrated independently in order
to fix the intrinsic parameters. This process is carried out using a well established
method due to Tsai [10]. It uses a single view of coplanar or non-coplanar points to find
the focal length, two coordinates of the image center, the first order radial lens distortion
coefficient and the uncertainty factor for the scale of the horizontal scan line. In our
system we use the version implemented by Willson [11].

Let us now consider the stereoscopic rig shown in Fig. 1, with the two cameras having
optical centers at O; and O, , respectively. For any point p in the 3D space, the plane

(0,,0,, p) is called epipolar plane of p. It intersects the image planes in two
conjugate lines called epipolar lines. The points ¢, and e, of intersection of the image
planes with the base line (O, , O, ) are called the epipoles of the stereo rig. The epipolar
planes form a pencil of planes through (O, , O, ) and the epipolar lines form two pencils
of lines through ¢, and e, respectively. If a point pair p, and p, are corresponding
points, then O;,0, p; and p, must lie in the same plane. This is the basic property

involved in the epipolar geometry. This property is called the co-planarity constraint.
The relationship between the two corresponding points p; and p, can be formulated

as:
Z,M7'X, =ZRM['X, +T, 4

with M the camera intrinsic matrices, R the rotation matrix from left to right camera
coordinate systems, T the translation vector from the origin of the left camera coordinate

system to the origin of the right camera coordinate system, and X = (x,y,))" the extended

vector with the coordinates of the sampling position considered in the digitized image.
In equation (4) the indexes / and r indicate left and right camera systems respectively. If
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the camera intrinsic parameter are known, (4) can be expressed in normalized
coordinates. Taking U, =(;v )7 =M;'X, and U, =(u,v,)T =M 'X, (the
normalized image coordinates), (4) can be written as:

Z,U, =Z,RU,; +T. (5)
The cross-product of (5) with the translation vector 7T =(z,,t,,t;)7 followed by the
inner product with U, yields to
U,EU, =0, (6)
0 -5 0 f
Ot 0 -#0a skew symmetric matrix constructed with the
O g
D’t2 tl 0 D
translation vector. The relation (6) is called the epipolar equation. It reflects the co-
planarity constraint or the fact that the three lines (0, ,0, ), (O;, p;) and (O, , p,) lie in

with E=T[R, T=

the same plane (see Fig. 1). The singularity of T implies det(E)=0. Moreover, the
property rank(E)=2 leads to the so-called rank 2 constraint. The epipolar equation was
discovered by Longuet-Higgins [9] in the early eighties. It defines the epipolar geometry
which comprises all about a stereo rig. It allows 3D reconstruction of the scene to be
carried out if the intrinsic camera parameters are known and it reduces the search for
corresponding points, constraining it from the entire second image to a single line.

Fig 1: Stereo rig and underlying epipolar geometry

The crucial step in the process of recovering the extrinsic camera parameters and the
epipolar geometry is estimation of the essential matrix from (6). The epipolar equation
(6) can be written as an homogeneous linear equations in the nine unknown elements of

E: hTé':O, with h:(ulur,urvl,u,ulv,,vlvr,vrul,vl’l)Ta vector defined by the
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corresponding points U;, U, and E the nine-dimensional vector, whose elements are

the coefficients of the essential matrix. Given n corresponding points we obtain a system
of linear equations of the form:

H,E=0. (7)
Since £ is defined up to a scale factor eight corresponding points are sufficient to
calculate the essential matrix. Moreover, rank(H,)=k and k<9, because in other case

(7) only posses the trivial solution. Estimating the epipolar geometry consists of
estimating the null space N(H,) of H,. Usually, more than eight corresponding points

are known but they are only estimates of the exact corresponding points. For this reason
direct techniques become ineffective, because the matrix H, build from the inexact data

is not longer singular, but ill-conditioned or of deficient rank. This mean that in practice
N(H,) :{O} and k=9. Consequently, solving (7) becomes equivalent to solving the

optimization problem:
) ®)

for any predefined norm |||. Several methods for solving this problem can be found in

min“H n E

the literature, for a comprehensive review of them we refer to [12]. Most of the
conventional approaches assume than the errors in the input data is Gaussian distributed
with zero mean, and use the L, —norm to solve the problem. As mentioned before the
least squares method is extremely unstable because the distribution of errors is not
Gaussian and the initial data contain outliers. For this reason we expect to find a good
approximation E of E using the proposed PMF-model. The final approximation of the
essential matrix is obtained by imposing the rank 2 constraint to £ . This last procedure
is carried out by applying the conventional truncated single value decomposition
(TSVD) to E.

Fig. 2: Original stereo images from scene GWEN.

To reinforce the numerical stability of the proposed method, the input data is first
normalized using the technique proposed by Hartley [3]. Summarizing, the essential
matrix is estimated according to the following algorithm:
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* Normalize the input data by applying Hartley's method [3]

® Use the PMF-model to solve the minimization problem (8) and use the estimated
values of £ to generate an approximation E of the essential matrix

* Apply the TSVD technique to determine the matrix £, of rank 2 and closest to £

® Take the essential matrix as E=E, .
Once the essential matrix is known the extrinsic camera parameters can be estimated
using a well-established technique proposed by Longuet-Higgins [9]. Since E'T =0, T

can be found up to a factor scalar by solving: min“ET T“ subject to 7] =1. Thus, T is the
T

unit eigenvector of EET corresponding to the smallest eigenvalue. The rotation matrix
is estimated by solving: II}Qin"E—T.R"z subject to RTR=1 and det(R)=1. Notice that
once these optimization problems have been solved sign ambiguities have to be
considered. Finally, the estimation of the 3D coordinates of a point p, given the
location of its projections p; and p, in the left and right image planes and the extrinsic
camera parameters is straightforward using the relation (4).

Fig. 3: Epipolar lines estimated with the proposed parametric model fitting estimator.

5 Selected Results

The proposed technique has been evaluated by estimating the epipolar geometry from
several stereoscopic scenes. Currently, we are also performing several comparisons with
results obtained using other previously reported methods. A more comprehensive report
of this comparative evaluation is in preparation [5]. This evaluation includes results
obtained using different technique form the literature as well as a direct comparison with
a method reported recently by the same author [6]. Although, the method introduced in
[6] was designed to satisfy physical meaningful constraints inherent to the calibration
problem, the new algorithm based on the more general PMF-model supplies very similar
results. In this article results obtained for the scene GWEN are reported. The original
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stereoscopic image GWEN is shown in Fig. 2. The epipolar lines obtained with the
proposed algorithm are shown in Fig. 3. In this representation both images are shown in
the background. Superimposed on the left image the matched points are highlighted, on
the right image the epipolar lines corresponding to these points are drawn. In Fig. 4 the
epipolar lines obtained using the parametric linear optimization problem described in [6]
are shown. The differences between the results of the two methods are absolutly
insignificant.

6 Summary and Further Work

A highly efficient and robust model to approximate general regression problems with
unknown error distribution function has been presented. The motivation behind the
presented research has been the absence of general robust and low complexity
estimators for computer vision tasks. The presented model is derived from a bi-criteria
optimisation problem combining the best properties of least squares and least absolute
deviation. The performance of the method has been assessed by recovering the 3D-scene
structure from stereoscopic images. In this context, several experiments have been
conducted. Some selected results are reported in this article. Further developments
include a comprehensive assessment of the introduced regressator and its suitability for
other computer vision related tasks like motion and disparity estimation, segmentation,
etc.

Fig. 4: Epipolar lines estimated with the linear parametric regularisation technique
introduced previously in [6].
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