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Abstract

Foveal or spatially-variant image representations are important compo-
nents of active vision systems. Log-polar sampling is a particularly power-
ful example as a result of the simplicity with which expansion and rotation
can be handled. These properties are exploited here for the detection of gen-
eral straight lines, line segments, and circles through the foveation point.
An efficient and practical method based on convolution is described, and
investigated in the context of a simple foveation strategy.

1 Introduction
The potential value of non-uniformly sampled or spatially variant images is greatly in-
creased when vision is active. Foveal sampling, where sample points are densest in the
centre, allows computational resources to be concentrated on regions of particular inter-
est, whilst maintaining a wide field of view, but it requires eye or camera movements to
allow such regions to be selected. Although in animal eyes non-uniform sampling is the
rule rather than the exception, this form of image representation has been exploited rela-
tively little in computer vision. This is partly because of the prevailing camera technolo-
gy, which is geared to image transmission and processing and so employs uniform
sampling, and partly because without effective active cameras non-uniform sampling sac-
rifices too much potential information. Now that active vision systems are becoming more
common, non-uniform sampling is likely to increase in importance.

Despite its difficulties, non-uniform sampling, and in particular log-polar sampling,
has received a certain amount of attention. Funt [3] demonstrated some of the fundamen-
tal advantages of an active foveated system for representing solid motion in 2-D, whilst
Weiman and Chaikin [11] laid some mathematical groundwork. Wilson [12] emphasised
the approximate log-polar mapping of the optic array onto the visual cortex in primates.
A number of researchers, notably Tistarelli and Sandini [7, 8] have used the scheme in the
context of motion detection; Tunley and Young [9] investigated the advantages of log-po-
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lar representations in estimating first-order optic flow. Also using log-polar sampling,
Lim, West and Venkatesh [4] have developed mechanisms for precise foveation of fea-
tures, Peters and Bishay [5] have described foveation on vanishing points, and Bederson,
Wallace and Schwartz [1] have described an active vision system incorporating log-polar
sampling.

The present paper builds on the theoretical work of Weiman and Chaikin [11] to ex-
plore the representation and detection of straight lines and circles in log-polar sampled im-
ages. An efficient new algorithm for finding these structures is described and its
performance on real images investigated. The algorithm is intended to be applied in the
context of a system like that of Brunnström, Eklundh and Uhlin [2], where a representa-
tion of a scene is built up using directed foveations.

2 The log-polar sampled image
In log-polar sampling, pixels are indexed by ring numberRand wedge numberW, related
to ordinaryx, y image coordinates by the mapping

(1)

where (r, θ) are polar coordinates, (xc, yc) is the position of the centre of the log-polar sam-
pling pattern,nr andnw are the numbers of rings and wedges respectively, andrmin and
rmaxare the radii of the smallest and largest rings of samples. We also define .

A log-polar sampled image is one whose samples are centred on points mapping to
integral R and W, , . The separation between
sample points is proportional to distance from the sampling centre, as shown in Fig. 1a.
This arrangement appears to be approximated by the ganglion cells of the primate retina
and the visual cortex [6]. In this representation, image expansions and rotations about
(xc, yc) become shifts inR andW, but image translation has a more complex effect.

In order to keep a pixel’s nearest neighbours in orthogonal directions at approximate-
ly equal distances from it, the following constraint is needed

(2)

Log-polar sampled images are often displayed on orthogonal (R, W) axes, as in Fig.
1b, but this is misleading since it leads them to be regarded as “distorted” representations.
In fact, the distortion only arises when they are displayed on the page or screen: as a map-
ping from coordinate values to position on a plane, the log-polar representation is no more
distorted than the conventional one. When displayed with the correct mapping to position,
as in Fig. 1c, the significant observable feature is the loss of resolution towards the pe-
riphery, as the samples become further apart.

These images should ideally be generated using special-purpose cameras, such as
those described in [8]. However, a reasonable approximation for research is obtained by
resampling a conventionally digitised image, and this method is used in the present work.
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Figure 1: (a) A log-polar grid with 16 rings and 16 wedges superimposed on a 180× 180 pixel image. Each
sample in a 16× 16 log-polar image would be derived from the grey levels in one segment of this grid.(b) The
same image sampled on a log-polar grid with 180 rings and 180 wedges, displayed on orthogonal axes,Rhor-
izontal andW vertical, the origin at the bottom left and top left corners (sinceW wraps round). Moving up a
column of (b) corresponds to moving anticlockwise round a ring in (a), starting at 3 o’clock.(c) The log-polar
image of (b) displayed with veridical mapping onto the plane. (Bilinear interpolation was used to display the
image.)(d) The graph of (i.e. ).(e) The sum of the real and imaginary parts
of the discrete Fourier transform of a straight line mask; origin at the centre,kρ horizontal andkθ vertical.(f) A
straight line mask with 128 rings and 128 wedges, coordinate system as in (b), generated in the Fourier domain
and transformed numerically. The mask was differentiated with respect toR, and smoothed with a circular
Gaussian mask with (spatial) , both operations carried out in the frequency domain.(g) As (e), but the
mask was convolved with a difference of Gaussians with inner and outer in the frequency
domain.
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3 The straight line in the log-polar image

3.1 The log-polar straight line and its Fourier transform
Any straight line, not passing through (xc, yc), can be mapped into any other straight line
by a rotation (to make the lines parallel) followed by a uniform expansion with (xc, yc)
fixed. This property can be exploited to allow easy detection of lines in log-polar images.
The idea was introduced by Weiman and Chaikin [11], and an implementation briefly dis-
cussed by Young [13].

Essentially, the log-polar image of a straight line is taken as a template and convolved
with the log-polar image under analysis. Peaks in the output correspond to the rotations
and expansions that map the template onto matching structures in the image, and so di-
rectly give the parameters of detected lines.

The equation of the straight line in log-polar coordinates is
and a graph of this equation is shown in Fig. 1d. If we convolve the reflected log-polar
image of this special straight line with the image of a general line given by

 then the peak of the convolution output will be at (ρl, θl).
Since the template is the same size as the image, it is efficient to perform the convo-

lution by multiplication in the Fourier domain. It is possible to find a closed-form expres-
sion for the Fourier Transform of the straight line in log-polar space. Although in practice
it might be adequate to synthesise the straight line in a log-polar array and apply the dis-
crete Fourier transform, computing its transform directly avoids noise caused by starting
from a discrete representation of the line. The formula for the transform also opens up the
possibility of further analysis of the properties of the process in the frequency domain,
though this is not exploited here.

To find the transform, we take a path integral along the line in log-polar space; ifSis
the standard line  with element ds in (ρ, θ) space, the integral is

(3)

wherew(ρ,θ) is a weighting factor to allow convergence. This must be smooth and tend
to zero for largeρ. A suitable choice is

, (4)

where a largerα makes the template more localised round the minimum ofρ. In all the
examples in this paper, . Since  the integral becomes

(5)

Rearranging and using standard tables, this evaluates to

(6)

whereΓ is the complex gamma function. The line is at an arbitrary position in the
log-polar grid; to make a useful mask we choose as the template . The discrete
Fourier transform of this is obtained by evaluatingF(kρ,kθ) at unit intervals ofkR andkW
from 0 to and respectively, with
and .
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3.2 Implementation of straight line detection
Transformed straight line templates were generated using Eq. 6. Because of symmetry,
the sum of the real and imaginary parts is sufficient; an example of a computed template
in the frequency domain is shown in Fig. 1e. Templates were multiplied by the frequency
domain representations of a variety of other operators, allowing Gaussian smoothing, dif-
ferentiation with respect toR or W, and difference of Gaussians convolution to be com-
bined with line detection in a single step. This allows matching to various kinds of
boundaries. Examples of the masks generated are shown in Figs 1f and 1g.

Any linear operation can be thus combined with line detection, but the images used
in this study were first subjected to a non-linear process to reduce sensitivity to the grey-
level range. This involved subtracting a local average of the grey level, obtained by Gaus-
sian smoothing, from each pixel in the original conventional images, and then applying
the logistic function  to each pixel of the result.

This compression was carried out on the conventional image input prior to resam-
pling in order to speed up the tests, but it could easily and effectively be done on the log-
polar images. Figs 2a and 2b show the effect of this preprocessing. For the results de-
scribed here,σ for the smoothing was 10, the initial maximum grey level was 255 andK
was 10/255.

Preprocessed images were resampled to a log-polar grid on the basis of Eq. 1. Bilinear
interpolation was used in the inner region where the log-polar pixels are closer together
than the original pixels, and simple averaging over a disc was used in the outer region
where the log-polar pixels are bigger than the originals. Although this approach is quite
crude, it is adequate for this investigation, and it is fast.

The log-polar image was transformed using the Fast Fourier Transform (FFT). The
results were multiplied point-by-point with the template transform and the (complex)
product transformed back to the spatial domain, to give the (real) convolution output,
C(R,W). Defining a peak as a pixel whose value exceeds some threshold and is not less
than any of its eight nearest neighbours, peaks inC and in -C were found and ranked by
absolute value. Peak positions were refined by taking the centre of gravity of a 3×3 region
in the convolution output centred on the peak pixel. The strongest peaks were taken as
representing the most salient straight lines in the sampled region. An example is shown in
Fig. 2c.

3.3 Line segment detection
Line detection only provides the parameters of infinite lines, not the end points of line seg-
ments. To find end points it is necessary to reinspect the original image, tracing the line
to see which parts of it contributed significantly to the convolution output. This must take
account of the operations such as smoothing and differentiation that were incorporated
into the convolution.

A straightforward way to do this is to multiply the image pixel by pixel with the spa-
tial form of the convolution mask, having first reflected and translated the latter to make
it line up with the detected line. The resulting array contains the values that would have
been summed to produce the convolution peak, if the convolution had been carried out in
the spatial domain. The size of these values indicates how much each pixel of the image
contributed to the peak.

1 1 exp+ Kx–( )( )⁄






We then simply project this array onto theW axis, by summing over allR from 0 to
for eachW. Starting from the maximum in the resulting one-dimensional array, we

search outwards in each direction, wrapping round if necessary, to find a value less than
some constant times the peak value. This gives the limits inθ of the line segment which
contributed most to the detected line. For a line with parametersρl andθl, these limits can
be converted to conventional coordinates using

(7)

This simple and fast procedure assumes that the line does not pass exactly through the
sampling centre (xc, yc). In fact, this case is rare because the high density of samples close
to (xc, yc) means that a small offset between the line and the centre is represented by a sig-
nificant distance inR.

Truncating the lines shown in Fig. 2c results in those shown in Fig. 2d.

4 The circle in the log-polar image

4.1 The log-polar circle and its Fourier transform
It is reasonable to ask whether the simplicity of straight line detection in log-polar images
can be extended to other curves. Since a circle through the sampling centre can be mapped
onto any other such circle by a rotation and an expansion, such circles can also be detected
by a convolution in log-polar space. Circles passing through the origin are, of course, un-
likely to occur by chance. However, if the sampling centre is deliberately placed on a

(a) (b)

(c)

Figure 2: (a) The original 903×577 pixel image.(b) The image after non-linear preprocessing.(c) The straight
lines found using log-polar sampling withrmax=250,nr=128,nw=256,rmin≈11, the mask smoothed withσ=1
and differentiated with respect toR. The threshold for peak detection was 5 times the standard deviation of the
convolution output.(d) The lines truncated to regions of high evidence. The 1-D evidence array was smoothed
with σ=2 and truncation occurred where the evidence fell to 0.5 times its peak value.

(d)
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smooth boundary, possibly using the output of log-polar straight line detection, then the
circle detected should approximate the osculating circle and the orientation and curvature
of the boundary can be estimated.

In fact, the relationship to the straight line method goes deeper than this, and circles
through (xc, yc) can be found for almost no additional computational effort alongside
straight lines. As Weiman and Chaikin [11] pointed out, circles through (xc, yc) are mir-
rored straight lines in log-polar coordinates: the equation of the circle centred on

, is . Thus the templates shown in Figs 1f and 1g
will match circles if they are simply left-right reflected. A peak in the convolution output
at (ρc,θc) gives the point on the circle diametrically opposite to the sampling centre, and
hence the circle’s centre and radius. Figs 3a and 3b demonstrate this.

It follows from the symmetry that the Fourier transform of the circle mask is just the
complex conjugate of that of the straight line mask. It is possible to obtain the convolution
results for straight lines and circles with a single transform. IfLR andLI are the real and
imaginary parts of the discrete transform of the log-polar imageL(kR,kW), andFR andFI
are the real and imaginary parts of the straight line template transformF(kR,kW), then

(8)

where (and is real). We therefore form the expression on the left in the
Fourier domain, and on transforming this back to the spatial domain, the real part of the
result is the convolution with the line maskF and the imaginary part is the convolution
with the circle maskF*. This combined technique is only useful if the same preprocessing
is suitable for both line and circle detection.

4.2 Implementation of circle detection
The implementation of circle detection is almost identical to the line detection method de-
scribed above. One addition to the repertory of preprocessing options turns out to be de-
sirable: modulation of the mask by (which is also carried out in the frequency
domain). This is helpful because, for a curve passing through the centre, differentiation
with respect toR is less useful than differentiation with respect toW, but the sign of the

(a) (b) (c)

Figure 3: (a) A log-polar image displayed as in Fig. 1b with (xc, yc) on the upper edge of the car’s rear wheel.
The sampling parameters are as for Fig 2. The car’s shadow and the wheel show the reflection symmetry be-
tween lines and circles.(b) The result of convolving the image of (a) with the circle mask. The mask was
smoothed withσ=1, differentiated with respect toW and multiplied by .(c) The circle corresponding to
the maximum of (b) (in white), along with four other circles (black) generated the same way at different (xc, yc)
(black dots), each chosen to be close to a curved boundary. Wheel arches are found even though they are not
exact or complete circles.
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gradient with respect toW will change on passing through the centre. Modulation of the
template by angle overcomes this difficulty.

Unfortunately, circle detection in resampled log-polar images is impeded by the poor
representation in the inner rings, where the log-polar pixels are smaller than the pixels of
the original image. This means that boundaries close to the centre are affected by the pixel
structure of the original image, and hence are hard to match well. Whilst not generally a
problem for straight line detection, this does affect circle detection, where the template is
aimed at picking up evidence close to the centre in order to find boundary orientation and
curvature.

This difficulty can be overcome to some extent by reducing the number of rings in the
log-polar image to avoid oversampling the centre, and an example of circle detection in a
real image is shown in Fig. 3c. However, the real solution would be to use log-polar hard-
ware that could sample the physical image everywhere at the appropriate resolution.

5 ‘Eye movements’: a resampling strategy
To get some sense of the potential value of log-polar line detection, it is important to sim-
ulate the way it might be exploited in an active vision system. To this end, a simple recen-
tring strategy was used to move the log-polar pattern around in conventional images, in
rough simulation of saccadic eye movements in the optic array. The strategy adopted is
designed to demonstrate the possibilities of the approach rather than to be optimum in any
respect.

By analogy with eye movements, a foveation is taken to mean extraction of informa-
tion for a single sampling centre (xc, yc), and a saccade to mean a movement of the sam-
pling centre. Various kinds of saccade were programmed, including:
(i) a small random step from a Gaussian distribution round the current centre;
(ii) a random movement to anywhere in the original image with a probability depending

on the density of previous sampling;
(iii) a step to the nearest point on a recently detected line;
(iv) a step to the intersection of two recently detected lines.

After each foveation the most prominent lines were recorded and one of the steps
above was chosen, using a set of fixed probabilities. (This is similar to the Iterated Func-
tion System method of generating a fractal set, in which one of a set of affine transforma-
tions is chosen at each step using fixed probabilities.)

A first step in building up a description of image structure from the lines picked up
by the system is to combine segments from different foveations where these are collinear
and overlapping. In the present system, line segments were combined when they were col-
linear to within the quantisation error of the log-polar representation, and when projected
onto a line with the average parameters, they overlapped. This simple approach, sufficient
for graphical demonstrations, needs to be developed further and put on a sound statistical
basis.

Two examples are shown: in Fig 4a small saccades towards line intersections build
up detailed local structure, whilst in Fig 4b large saccades away from areas already cov-
ered give a wide coverage of the input image.






6 Discussion
The work reported here has put some flesh on the bones of Weiman and Chaikin’s theo-
retical ideas [11]. Efficient detection of straight lines and circles in log-polar images has
been implemented. In the resampled images used here, straight line detection is demon-
strably effective, but circle detection is hampered by the inaccuracy of the representation.
A significant advantage of the approach is that no edge or feature detection precedes the
line detection; the main computational cost is an FFT of complexity
for each foveation, and this could be carried out in suitable hardware.

(a)

(c)

(b)

Figure 4: Examples of straight lines accumulated using an eye movement strategy. In all casesrmax=50,nr=64,
nw=128,rmin≈2.3, and the mask is differentiated with respect toR and smoothed withσ=1. Up to 5 lines from
each foveation are drawn, provided their peaks exceed 3 times the s.d. of the convolution output.(a) Input image
is Fig 2a. Combined line segments from 100 foveations, saccades of type (i) and (iv) with P(type i)=0.25.(b)
As (a) but all saccades of type (ii).(c) Input image for(d), segments from 500 foveations with all 4 types of
saccades equally probable.(e), (f) As for (c) and (d) with a different input image.

(d)

(e) (f)
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Processes on log-polar images are not easy to compare with processes on convention-
al images, since they are designed to be embedded in a system with foveal sampling and
an active camera at the hardware level. In particular, the results of log-polar line and circle
detection are not comparable with those of, say, edge detectors or the Hough transform
operating on conventional images. Weiman [10] has described Hough transform detection
of straight lines in log-polar space, but results on real images are not reported.

A full evaluation of the system described here requires further work. Tests on syn-
thetic images show that the method can readily locate the boundaries of polygons where
the standard deviation of the noise exceeds the grey-level difference between the interior
and exterior, but this is not surprising given the incorporation of smoothing and the inte-
gration of evidence from a substantial area of the image. More to the point, Figs 4d and
4f give some indication of the extent to which a combination of log-polar line detection
and camera movements might work together to build up a structural representation. An
appropriate benchmark would involve a higher-level task which demanded that image
structure be extracted.

These processes could play a valuable role if integrated into an active vision system,
with spatially variant sampling at the hardware level. However, the most significant chal-
lenges are not at the level of feature detection, but lie in developing a strategy for fovea-
tion and saccade so as to integrate information effectively. This will require a more task-
directed, purposive approach.
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