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Abstract

‘Invariant regions’ are image patches that automatically deform with chang-
ing viewpoint as to keep on covering identical physical parts of a scene. Such
regions are then described by a set of invariant features, which makes it rela-
tively easy to match them between views and under changing illumination. In
previous work, we have presented invariant regions that are based on a com-
bination of corners and edges. The application discussed then was image
database retrieval.

Here, an alternative method for extracting (affinely) invariant regions is
given, that does not depend on the presence of edges or corners in the image
but is purely intensity-based. Also, we demonstrate the use of such regions
for another application, which is wide baseline stereo matching. As a matter
of fact, the goal is to build an opportunistic system that exploits several types
of invariant regions as it sees fit. This yields more correspondences and a
system that can deal with a wider range of images.

To increase the robustness of the system even further, two semi-local con-
straints on combinations of region correspondences are derived (one geomet-
ric, the other photometric). They allow to test the consistency of correspon-
dences and hence to reject falsely matched regions.

1 Introduction

Local, invariant features are powerful tools for finding correspondences between different
views of an object or scene. The local character yields robustness against occlusions and
changing backgrounds. The invariance makes them immune against changes in viewpoint
or illumination. An excellent example is the work by Schmid and Mohr [10]. They use
relatively small, circular patches around corners. The surface textures they cover are
characterized with invariant combinations of Gaussian derivatives. Invariance is under
rotations, while invariance under scaling is handled by using circular neighborhoods of
several sizes. Loweet al. extended these ideas to real scale-invariance [5], using circular
regions that maximize the output of a difference of Gaussians (DOG) filter in scale space.
Special attention has been given to the efficiency of their implementation.
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Figure 1:Affinely invariant regions based on corners and edges.

In previous work [14], we have extended this approach to affine invariance, by in-
troducing a method to delineate parallelogram shaped regions that automatically adopt
different shapes for different viewpoints, such that they systematically cover the same,
physical part of a surface. The crux of the matter is that these corresponding shapes
are determined solely on the basis of a single image, i.e. no other views are necessary.
Corresponding regions are formed automatically in different images separately, without
any knowledge about the other images. Once such invariant regions have been extracted,
the texture they enclose is characterized with generalized color moment invariants. Both
the region extraction and their invariant description are invariant under affine geometric
changes and different scalings and offsets in the three color bands. The affine geomet-
ric invariance subsumes that the rather small regions correspond to almost planar surface
patches. Such invariance implies that correspondences can be found under wider changes
in viewpoint.

A disadvantage of the method is that it heavily relies on the accurate detection of
geometric features such as corners and edges. It starts from a corner and its nearby edges.
Two points move away from the corner in both directions along the edges. Their relative
speed is coupled through the equality of relative affinely invariant parameters. At each
position, the two points together with the corner define a parallelogram. The points stop at
positions where simple photometric quantities of the texture covered by the parallelogram
go through an extremum. Such quantity can be for instance the average value in one of
the color bands. The whole procedure is invariant under the aforementioned geometric
and photometric changes.

Figure 1 shows the invariant parallelograms for three pairs of corresponding points.
Although there is a large image distortion between the two images, the affinely invariant
parallelograms – which have been found for these images independently – cover similar,
physical regions.

A first contribution in this paper is that we propose an alternative way of construct-
ing affinely invariant regions, which does not rely on the presence of corners or edges.
They are derived from image intensities directly. In contrast to a number of existing tex-






ture oriented approaches [1, 4] the process is non-iterative. The idea is not to replace
the above parallelogram type regions, but rather to complement them with other types.
This should result in an opportunistic system, that exploits a wide diversity of invariant
regions depending on what is on offer. This should increase robustness and the number
of correspondences found.

The focus in the work of Schmid and Mohr and our previous work was on object
recognition and image database retrieval. In this paper we use invariant regions for ex-
tracting the epipolar geometry of wide baseline stereo setups. Examples are shown where
the cameras have very different orientations. Our approach is akin to that of Pritchett and
Zisserman [8] who start their wide baseline stereo algorithm by extracting quadrangles
present in the image and match these based on a normalized cross-correlation to find lo-
cal homographies, which are then extended to larger parts of the image. The difference
is that here no special patterns, like quadrangles, are assumed to be directly visible in the
image. Hence, the applicability is much wider. Recently, Tell and Carlsson [13] also pro-
posed a wide baseline correspondence method based on affine invariance. They extract
an affinely invariant Fourier description of the intensity profile along a line connecting
two corner points. The non-local character of their method makes it more robust, but only
suited for planar objects, which is a serious limitation on the applicability of their method.

A third contribution is the introduction of geometric and photometric constraints to
check the consistency of potential correspondences. As will be shown, these constraints
filter out false matches. We have found that the application of these constraints before
usingRANSAC [3] to extract epipolar geometry yields important improvements, certainly
in the case where false matches strongly outnumber the good ones.

The remainder of the paper is organized as follows. First, the new, intensity-based
method for extracting affinely invariant regions is discussed in section 2. Then, section 3
explains in more detail how the actual correspondence search, based on affine moment
invariants computed over these regions, is carried out. Several consistency checks that
can be used to reject false matches and hence to increase the overall robustness of the
system are proposed in section 4. Finally, section 5 discusses some experimental results
obtained with our system. Section 6 concludes the paper.

2 Intensity-based method

A major difficulty when extracting local, affine invariants is that they have to be computed
over corresponding image regions. When the camera rotates about other axes than the
optical axis, the shape of the region in the image should necessarily change with the
viewpoint. This section presents a way of extracting such self-adaptive ‘invariant regions’.
The method is directly based on the analysis of intensity, without extraction of features
such as edges or corners. It turns out to complement our previous method based on corners
and edges well, in that invariant regions are typically found at other locations in the image.

Instead of taking corners as anchor points, the method starts from local extrema in
the image intensity, extracted with a non-maximum suppression algorithm. Such points
cannot be localized as accurately as corners, since the local extrema in intensity are often
rather smooth, but they can withstand quite some changes in illumination and they are
less likely to lie on the edge of an object resulting in a non-planar neighborhood. Besides,
slight changes in their position do not affect the construction of the regions too badly. Of
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Figure 2: The intensity along “rays” emanating from a local extremum are examined.
The point on each ray for which a function f(t) reaches an extremum is selected. Linking
these points together yields an affinely invariant region, to which an ellipse is fitted using
moments.

course, some illumination effects will defy our construction, e.g. specular highlights.
Given such a local extremum, the intensity function along rays emanating from the

extremum is studied, as shown in figure 2. The following function is evaluated along each
ray:

f(t) =
jI(t)� I0j

max(
R
t

0
jI(t)�I0jdt

t
; d)

with t the Euclidean arclength along the ray,I(t) the intensity at positiont, I0 the in-
tensity extremum andd a small number which has been added to prevent a division by
zero. The point for which this function reaches an extremum is invariant under the afore-
mentioned affine geometric and photometric transformations (given the ray). Typically,
such extrema occur at positions where the intensity suddenly increases or decreases dra-
matically compared to the intensity changes we encountered on the line up to that point.
Althoughf(t) as such is not invariant to the geometric and photometric transformations
we consider, the positions of its extrema are invariant. Note that in theory, leaving out the
denominator in the expression forf(t) would yield a simpler function which still has in-
variant positions for its local extrema. In practice, however, this simpler function does not
give good results since its local extrema are too shallow, resulting in inaccurate positions
along the rays and hence inaccurate regions. With the denominator added, on the other
hand, the local extrema are localized quite accurately.

Next, all points corresponding to extrema off(t) along rays originating from the
same local extremum are linked to enclose an (affinely invariant) region (see figure 2).
This often irregularly-shaped region is then replaced by an ellipse having the same shape
moments up to the second order. This ellipse-fitting is affinely invariant as well.

Note that the resulting region is not centered around the original anchor point (the
intensity extremum). In fact, the whole procedure is quite robust to the inaccurate local-
ization of this point. In most cases, small changes in its position will have no effect on
the resulting region if the intensity profile is indeed showing a shallow extremum.

Finally, we double the area of the ellipses found. This leads to a higher distinctive
power of the regions, due to a more diversified texture pattern within the region and hence
facilitates the matching process, at the cost of a higher risk of non-planarity due to the






Figure 3:Affinely invariant regions based on intensities only (black) and the linked points
used to extract them (white).

less local character of the regions.
Figure 3 again shows some details of the two very different views shown in fig. 1,

with some corresponding invariant regions that were extracted using the intensity-based
method (black) and the linked points on which the region extraction is based (white).

3 Finding Correspondences

3.1 Region Description

Once local, invariant regions have been extracted, finding correspondences between two
views becomes much simpler. This is achieved by means of a nearest neighbor classi-
fication scheme, based on feature vectors containing moment invariants computed over
the affinely invariant image regions. As in the region finding step, we consider invari-
ance both under affine geometric changes and linear photometric changes, with different
offsets and different scale factors for each of the three color bands.

Each region is characterized by a feature vector of moment invariants. The moments
we use are “Generalized Color Moments’, which have been introduced in [7] to better
exploit the multi-spectral nature of the data. They contain powers of the image coordinates
and of the intensities of the different color channels.

Mabc
pq =

ZZ




xpyq [R(x; y)]a[G(x; y)]b[B(x; y)]c dxdy

with order p + q anddegreea + b + c. They yield a broader set of features to build
the moment invariants from and, as a result, moment invariants that are simpler and more
robust than the classical moment invariants. In fact, they implicitly characterize the shape,
the intensity and the color distribution of the region pattern in a uniform manner.

More precisely, we use 18 moment invariants. These are invariant functions of mo-
ments up to the first order and second degree (i.e. moments that use up to second order
powers of intensities(R;G;B) and first order powers of(x; y) coordinates). In [7] it has
been proven that these 18 invariants form a basis for all geometric/photometric invariants
involving this kind of moments. For an overview of the invariants used, see table 1. As
an additional invariant – and, as shown by our experiments, quite a distinctive one – we
use the region “type”. This value refers to the method that has been used for the region
extraction, i.e. is it a parallelogram-shaped region found on the basis of edges and cor-
ners, or an elliptic region found on the basis a an intensity extremum. We plan to extend
the number of types in the future. Only if the type of two regions corresponds, can they
be matched.






Table 1: Moment invariants used for comparing the patterns within an invariant region.
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3.2 Matching Regions

Each region in the first image is then matched to the region in the other image for which
the Mahalanobis-distance is minimal and below a predefined thresholdd. Then, all re-
gions of the second image are matched in a similar way to the regions of the first image.
Only a mutual match is accepted as a real correspondence between the two views. The
covariances needed to compute the Mahalanobis-distance are estimated based on all the
regions found. Due to the different nature of the different region types, better results are
obtained when different covariances are computed for each region type separately (based
on all the regions of that type). The comparison of feature vectors can be done in an ef-
ficient way using hashing-techniques. At this moment, only hashing based on the region
type has been implemented.

Once corresponding regions have been found, the cross-correlation between them
is computed as a final check before accepting the region correspondence. This cross-
correlation check is not performed on the raw image data, but after normalization of the
two regions to a unit square or circle (depending on the region type)1. In this way, the
effect of the geometric deformations on the cross-correlation is annihilated.

4 Robustness - Rejecting false matches

Due to the wide range of geometric and photometric transformations allowed and the
local character of the regions, false correspondences are inevitable. These can be caused
by symmetries in the image, or simply because the local region’s distinctive power is
insufficient.

Semi-local or global constraints offer a way out: by checking the consistency between
combinations of local correspondences (assuming a rigid motion), false correspondences
can be identified and rejected. The best known constraint is checking for a consistent
epipolar geometry, e.g. based onRANSAC [3], a robust method based on random sam-
pling and rejecting all correspondences not conform with the found epipolar geometry.
Although this method works fine in many applications, our experiments have shown that
this approach may have difficulties in a typical wide baseline stereo setup, where false
matches may outnumber the good matches. In that case, many of the randomly selected
seven-point samples will contain outliers, resulting in large computation times (each time
rejecting the sample and trying out a new combination), or even erroneous results (a sam-
ple containing an outlier coincidentally yielding a reasonable amount of matches).

Here, two other semi-local constraints are proposed that may be used to reject outliers.
Both work on a combination of two region correspondences only, hence the amount of
combinatorics needed is limited. The first one tests the geometric consistency, while the
second one is a photometric constraint. Checking these constraints first before testing
the epipolar geometry withRANSAC can considerably improve the results under the hard
conditions of wide baseline stereo. This is akin to the work of Carlsson [2], who has
recently proposed a view compatibility constraint for five points in two views based on a
scaled orthographic camera model.

1For the circular regions, the correct relative ’orientation’ is found by maximizing the cross-correlation.






4.1 A Geometric Constraint

Each match between two image regions defines an affine transformation, which is, in
turn, an approximation of the homography linking the projections of all points lying in
the same plane. All possible plane-related homographies between two images span a four-
dimensional subspace of the nine-dimensional space of3� 3 matrices [6, 11]. However,
this does not mean that a combination of more than four different homographies (i.e. four
region correspondences) is needed before one is able to derive a constraint. Due to the
special structure of this four-dimensional subspace, a constraint can already be derived
given two different homographies. It is even possible to derive the fundamental matrix
starting from two homographies [9].

Suppose we have two homographiesH1 andH2, belonging to planes�1 and�2

respectively. Combining them asH�1
1 H2 yields a planar homology, whose eigenanalysis

reveals one fixed point (the epipole) and one line of fixed points (the common line of the
planes�1 and�2). This line of fixed points is used by Sinclairet al [12] to test whether
two rigid planar motions are compatible. They project this common line to the other
image usingH1, and once again usingH2. If the two planes are indeed in rigid motion,
the two resulting lines in the second image should coincide, which can easily be checked.

The geometric constraint we derive here is an algebraic distance. As it only requires
the evaluation of the determinant of a3�3matrix, it can be applied quite fast. This makes
it well suited for applications like ours, where many consistency checks are performed on
different combinations of planes.

To check whether two correspondences found are geometrically consistent with one
another, it suffices to check whether

det

0
@ a23 � b23 b13 � a13 a13b23 � b13a23

a22 � b22 b12 � a12 a12b23 � b13a22 + a13b22 � b12a23
a21 � b21 b11 � a11 a11b23 � b13a21 + a13b21 � b11a23

1
A � Æg

with Æg a predefined threshold,A = [aij ] andB = [bij ] the affine transformations map-
ping the region in the first image to the region in the second image, for the first and
second match respectively. For the derivation of this semi-local constraint, we refer to the
appendix.

Suppose we haveN correspondences, each linking a different local region in imageI

to a similar region in imageI 0 byN different affine transformations. For each combina-
tion of two such correspondences, the above consistency constraint can be checked. A
specific region correspondence is considered incorrect if it is consistent with less than
ng other correspondences (withng typically 8). Each good correspondence should have
at leastng other consistent correspondences. This procedure may have to be repeated a
number of times, since rejecting a correspondence may cause other correspondences to
have their number of consistent correspondences decreased below the threshold as well.

4.2 A Photometric Constraint

Apart from geometric constraints, photometric constraints may be derived as well. Al-
though it is not necessarily true that the illumination conditions are constant over whole
the image (due to shadows, multiple light sources, etc.), it is reasonable to assume that at
least some parts of the images have similar illumination conditions as the region corre-
spondence under consideration. So for each region correspondence, one should be able to
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Figure 4: Viewpoint invariance of the region extraction and matching: number of cor-
rect and symmetric matches found as a function of the rotation angle with respect to the
reference view (0 degrees).

find at leastnph other region correspondences with a similar transform in the intensities
(with nph typically 4).

First, the linear transformations linking the intensities in both images are computed
for the region correspondences using moments. Then, these transformations are com-
pared. To be consistent, only an overall scale factor is allowed, to compensate for dif-
ferent orientations. If not enough consistent region correspondences can be found, the
region correspondence is rejected. Again, a few iterations may be needed.

5 Experimental Results

5.1 Viewpoint invariance

To quantitatively check the viewpoint invariance of our method, we took images of an
object starting from head on and gradually increasing the viewing angle in steps of 10 de-
grees. The results of this experiment are shown in figure 4.

For each image, the affinely invariant regions were extracted, and matched to the
regions found in the 0 degrees reference image. Next, the regions were fine-tuned to
optimize the cross-correlation and filtered using the semi-local geometric and photometric
constraints. Finally, we applied the epipolar test usingRANSAC to automatically select the
’good’ matches, and verified these matches visually, subdividing them into three different
classes: correct, symmetric or false. With ’symmetric’ matches, we refer to those matches
that do not link physically identical points between the two images, but points that can
not be distinguished on a local scale due to a symmetry in the image. For instance, the
text on the drink can used in this experiment contains two times the letter ’M’. Moreover,
these letters are exactly below one another, such that they lie more or less on the same
epipolar line as well due to the chosen camera movement. So there is no way for the
system to distinguish between the regions on these two letters. The horizontal line added






Figure 5:Example 1: final region correspondences (top) (black for correct matches, white
for false matches) and epipolar geometry (bottom).

to the figure indicates the lower threshold of 8 correct matches needed for computing the
epipolar geometry in a simple (linear) way.

Clearly, the system can deal very well with the changes in viewpoint up to 60 degrees.
Only correct and symmetric matches were left. For larger angles, the epipolar test could
no longer be applied, as the number of matches was too low. It is mainly the change in
scale due to the foreshortening of the object that causes problems, in combination with
more and more specular reflection.

5.2 Wide Baseline Stereo Examples

As a first wide baseline example, consider the images shown in figure 5. The repetition
on the keyboard caused many wrong matches at first, since more or less the same regions
were found for most of the keys. Based on the semi-local constraints though, many of
these wrong matches (17) were rejected. From the 26 matches left, 21 were correct, 3
were still caused by symmetries on the keyboard and 2 were completely false matches.
All of these are shown superimposed on the images of figure 5. Applying the epipolar test
usingRANSAC to those 26 matches, allowed to reject the five outliers, and gave a quite
accurate epipolar geometry, shown also in figure 5.

Figure 6 shows a second example. Although the distance between the two cameras
is about 4 or 5 meter, and the change in orientation is over 50 degrees, several correct
region correspondences could be found (after the filtering, using the geometric and pho-
tometric constraints and testing the epipolar geometry usingRANSAC). These are shown
superimposed on the upper images in figure 6. All these regions are matched correctly to






Figure 6: Example 2: final region correspondences (all matches correct) and epipolar
geometry.

the corresponding region in the other image. As can be seen in the figures, not all region
correspondences match perfectly. This is due to the lack of texture within these regions
(e.g. the quadrangle on the wall), or due to the non-planarity of the neighborhood of the
interest point. Nevertheless, the similarity between the regions was good enough for these
match to be found and to be maintained throughout the filtering process.

Again, from those region correspondences, the epipolar geometry was derived using
RANSAC. Some epipolar lines are shown at the bottom of figure 6. These clearly corre-
spond very well over whole the image.

As a third and last wide baseline stereo example, look at the two images shown in
figure 7. Note the large change in viewpoint, resulting in large changes in scale in some
parts of the image, and extreme foreshortening in other parts. Nevertheless, sufficient
matches were found for an accurate determination of the epipolar geometry.

6 Conclusion

In this contribution, some refinements to the system described in [14] are proposed. First,
the robustness is substantially increased by introducing a new method for extracting local
affinely invariant regions. This method is not meant to replace the one proposed in [14],
but rather to be used as a complementary method. The final goal is to obtain an oppor-
tunistic system that exploits several types of invariant regions simultaneously. Other kind
of regions might be developed as well, both general ones as more specific ones tuned
towards specific features or applications. The more methods included in the system, the
higher the number of correspondences found, the more accurate the resulting epipolar






Figure 7:Example 3: final region correspondences (top) (black for correct matches, white
for false matches) and epipolar geometry (bottom).

geometry and the wider the range of images to which the method will be applicable.
Second, two semi-local constraints have been proposed, that allow to test the geo-

metric and photometric consistency of combinations of correspondences. This allows
to reject falsely matched correspondences at an early stage. This is vital in such wide
baseline stereo setups, where the number of false matches may be quite large.

Appendix: Derivation of the geometric semi-local constraint

Consider two imagesI andI 0. Points in imageI are denoted with homogeneous coordi-
natesp = (x; y; z)T , while points in imageI 0 are denoted with homogeneous coordinates
p0 = (x0; y0; z0)T . For the coordinates of real world (3D) points, capital letters are used,
such asP = (X;Y; Z). A homographyHi belonging to a plane�i defines the following
relation between the projections in imagesI andI 0 of 3D points lying on the plane�i

p0 = Hip

with Hi a3� 3 matrix.
Take an arbitrary pointp = (x; y; z)T in imageI , corresponding to the 3D point

P = (X;Y; Z)T . Then, bothH1p andH2p lie on the epipolar line corresponding to the
pointp. Hence, the following formula for the epipolar line corresponding to the pointp

can be derived
l = (H1p)� (H2p)

where� denotes the vector product.






All epipolar lines pass through the same pointe, the epipole.

9e8p : (H1p�H2p)
T
e = 0

¿From this property, we can derive a constraint onH1 andH2.
If Hij denotes the j-th column of matrixHi, this can be worked out as follows:

9e8(x; y; z) : [(xH11 + yH12 + zH13)� (xH21 + yH22 + zH23)]
T
e = 0

This is a second-order equation inx, y andz with coefficientsA, B, C, D, E andF
functions ofe andHij.

8(x; y; z) : Ax2 +By2 + Cz2 +Dxy +Exz + Fyz = 0

Since this equation has to be fulfilled for all possible valuesx, y andz, all the coefficients
in the equation have to be zero.

A = (H11 �H21)
T e = 0

B = (H12 �H22)
T e = 0

C = (H13 �H23)
T e = 0

D = (H11 �H22 +H12 �H21)
Te = 0

E = (H11 �H23 +H13 �H21)
T e = 0

F = (H12 �H23 +H13 �H22)
Te = 0

In order for all the above equations to have a solutione 6= (0; 0; 0)T , the following matrix,
which is a function ofHij, must be rank-deficient.

rank

0
BBBBBB@

(H11 �H21)
T

(H12 �H22)
T

(H13 �H23)
T

(H11 �H22 +H12 �H21)
T

(H11 �H23 +H13 �H23)
T

(H12 �H23 +H13 �H22)
T

1
CCCCCCA
� 2

Applied to local regions

For local regions, the perspective deformation is too small to be detected. As a result,
only an affine transformation can be derived. In this case, the homographies (from now
on referred to asA andB) are of the following form:

A =

0
@ a11 a12 a13

a21 a22 a23
0 0 1

1
A B =

0
@ b11 b12 b13

b21 b22 b23
0 0 1

1
A

The rank-2 constraint derived in the previous section then becomes:

rank

0
BBBBBB@

0 0 a11b21 � b11a21
0 0 a12b22 � b12a22

a23 � b23 b13 � a13 a13b23 � b13a23
0 0 a11b22 � b12a21 + a12b21 � b11a22

a22 � b22 b12 � a12 a12b23 � b13a22 + a13b22 � b12a23
a21 � b21 b11 � a11 a11b23 � b13a21 + a13b21 � b11a23

1
CCCCCCA
� 2






Rows (1), (2) and (4) force the epipole to lie at infinity. This corresponds to an ortho-
graphic projection model, which indeed leads to affine transformations between two views
of a planar object. But also without forcing the epipole to infinity there is one constraint
left:

rank

0
@ a23 � b23 b13 � a13 a13b23 � b13a23

a22 � b22 b12 � a12 a12b23 � b13a22 + a13b22 � b12a23
a21 � b21 b11 � a11 a11b23 � b13a21 + a13b21 � b11a23

1
A � 2

The actual consistency constraint used in our experiments is then

det

0
@ a23 � b23 b13 � a13 a13b23 � b13a23

a22 � b22 b12 � a12 a12b23 � b13a22 + a13b22 � b12a23
a21 � b21 b11 � a11 a11b23 � b13a21 + a13b21 � b11a23

1
A � Æ

with Æ a predefined threshold.
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