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Abstract

A system for the tracking and classification of livestock movements is pre-
sented. The combined ‘tracker-classifier’ scheme is based on a variant of Is-
ard and Blakes ‘Condensation’ algorithm [6] known as ‘Re-sampling Con-
densation’ in which a second set of samples is taken from each image in the
input sequence based on the results of the initial Condensation sampling. This
is analogous to a single iteration of a genetic algorithm and serves to incor-
porate image information in sample location.

Re-sampling Condensation relies on the variation within the spatial (shape)
model being separated into pseudo-independent components (analogous to
genes). In the system a hierarchical spatial model based on a variant of the
Point DistributionModel [16] is used to model shape variation accurately. Re-
sults are presented that show this algorithm gives improved tracking perfor-
mance, with no computational overhead, over Condensation alone.

Separate Cyclic Hidden Markov Models are used to model ‘Healthy’ and
‘Lame’ movements within the Condensation framework in a competitive man-
ner such that the model best representing the data will be propagated through
the image sequence.

1 Introduction

In recent years there has been much interest in object tracking [6, 1, 16, 15, 12] and tempo-
ral modelling [8, 14, 18, 4]. The combination of object tracking and temporal modelling
gives rise to many exciting application possibilities, for example; Isard and Blake [6] use
a temporal model to improve the speed and robustness of their object tracker. Wren and
Pentland [18] and Davis and Bobick [4] use temporal models to classify observed human
movements and in the case of the latter use this information to trigger interactive responses
in a virtual environment. Johnson et. al. [8] build a joint behaviour model in which a vir-
tual human reacts in a realistic manner to observed behaviour in a limited domain. Sumpter
and Bulpitt [14] use object tracking and temporal modelling to predict the behaviour of a
flock of ducks or sheep for use in the control system of a robotic sheepdog.
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We combine a stochastic ‘Re-sampling Condensation’ tracker with multiple ‘Cyclic
Hidden Markov Models’ to model and classify livestock ‘behaviour’. In this paper we
take lameness as an example ‘behaviour’ although it is hoped that this scheme may be
extended to more complex animal behaviours such as the abnormal behaviour exhibited
by animals when on heat (oestrus).

2 Background

2.1 The Condensation Algorithm

Isard and Blake’s Condensation (CONditional DENSity propagATION) algorithm [6] is a
simple, yet powerful, way of propagating multipledynamic problem solutionhypothesises
over time using a finite set of discrete samples. The original application of the Conden-
sation algorithm was object tracking in an image sequence in which a model of an object
(spatial and temporal) was fitted to an image sequence. Propagating multiple hypothe-
sises gave improved robustness over single hypothesis techniques such as Kalman filters
[3]. The basic Condensation algorithm is given below;

Repeat (for each sample at each time step):

Select: A sample is selected stochastically from the previous generation (time
step) based on a ‘fitness’ measure.

Predict: A single state of this sample at the next time step is predicted using a
stochastic temporal model.

Evaluate: The ‘fitness’ of the predicted sample location is evaluated.

Note: Samples may be initialised randomly or according to some known probability dis-
tribution for the first frame.

Condensation has also been applied to the field of temporal modelling (prediction and
classification) of objects. Johnson and Hogg [9] use condensation to propagate multiple
prediction hypothesis for pedestrian trajectory classification. Black and Jepson [2] use a
similar scheme with multiple temporal models as a combined tracker and classifier to anal-
yse an augmented whiteboard. Walter et. al. [17] use Black and Jepson’s method with
continuous (non-discrete) Hidden Markov Models to classify the trajectories of people in
an office scene.

2.2 Hidden Markov Models

Hidden Markov Models (HMMs) [13] are used to model observations from a stochastic
process where there is some underlying structure, but observations are not deterministic.
In many cases the exact nature of this process is not observable (i.e. ‘Hidden’), for exam-
ple speech, however the resulting observations (sound in the case of speech) are. HMMs
model the underlyingprocess using a first order Markov chain and the relationshipbetween
the process and the observations by a probability distribution (either discrete or continu-
ous). Figure 2.1 illustrates this by modelling the structure of the word ‘hello’ using one
state for each syllable.
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Figure 2.1: Modelling the word ‘Hello’ using a Hidden Markov Model

This model of the word ‘hello’ illustrates two important features of the HMM. Firstly,
although the Markov chain is only first order, a temporal history is encoded by limiting
the state transitions possible. In this example state A will always occur before state B thus
encoding the temporal ordering of the two syllables in the word. Secondly, if the four pos-
sible permutations of syllables are examined (‘He-lo’,‘He-o’,‘Hel-lo’ and ‘Hel-o’), it can
be seen that an invalid combination is possible (‘He-o’). If the HMM were to be used for
recognition this would not be a problem as there is no other word in the English language
that consists of these syllables, however if the HMM were to be used for speech genera-
tion this would present a problem. HMMs intended for sequence generation or prediction
in general require more complex state transition architectures than HMMs intended for
recognition only.

Rabiner in his excellent introduction to HMMs [13] lists three problems that need to be
solved in order to use HMMs. Problem 1 is the evaluation problem, or how the probability
that an observed sequence was produced by a given HMM may be calculated. Problem 2
is the recovery of a ‘correct’ sequence of hidden states for an observation sequence. Prob-
lem 3 is the training problem, or how to optimise a set of HMM parameters so as to best
describe how an observation sequence (or sequences) come about. In addition to these
there is a fourth problem; prediction. The problem is, given some knowledge of the sys-
tem in the past / present, how can we predict the future behaviour of the system. This is
an important, but not widely covered, problem. This is possibly due to speech recognition
(the principal original use of HMMs) requiring no prediction from the HMM. Prediction
is essential to our application and is discussed in section 4.

3 Building Spatial Models for Tracking Applications

Previous work has described how multiple contour models of an object class may be built
[10] and how the variation within these models can be separated into independent com-
ponents [11]. These models are a variation on the Point Distribution Model [16] in which
a contour is modeled by a mean shape (described by a set of points) and a set of linear
‘modes of variation’. We have applied this scheme to modelling livestock, building mul-
tiple models of cow outlines and separating the variation of each model into inter-animal,
front legs and rear legs components as shown in figure 3.1.

Each model is discretised by performing vector quantisation on the projections of the
training data in the eigenspaces of the model. This results in a set of prototypical ‘states’






Model 1 Model 2 Model 3

Front Legs 
Variation

Rear Legs 
Variation

Inter−animal 
Variation

All
Variation

Figure 3.1: Separating Object Variation Using a Hierarchical Scheme

for inter-animal, front legs and rear legs components.

4 Building Multi-stream Cyclic Hidden Markov Models

Cyclic Hidden Markov Models (CHMMs) use a hidden state architecture in which the first
and last states are joined. This is illustrated in figure 4.1.

Figure 4.1: CHMM Hidden State Architecture

The Multi-stream Cyclic Hidden Markov Model (MSCHMM) is a CHMM with mul-
tiple sets of (discrete) visible states which model observationally independent but related
features of a system. In our example we model the front and rear leg pairs as two separate
‘observational streams’ based on a single underlying CHMM. It should be noted that con-
tinuous (e.g. Gaussian mixture model based) observation probability distributions could
be used, however these would be computationally more expensive to evaluate and as such
are not used in the system implemented.

Hidden state transition probabilities are initialised by defining parameters Ps, Pc and
Px as the probability that the next hidden state remains the same, changes or the current
state is the last state in the sequence respectively. If we assume initially that these parame-






ters are the same for each hidden state we get the probabilitydistributiongiven in equation
1 for the cycle length in states.
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Where:
n = The Sequence Length

P (n) = The probability of a sequence of length n resulting from the CHMM

N = The No. of Hidden States in the CHMM

r = The No. of Hidden State Repetitions (n-N)

Training sequences are parsed into cycles (of various lengths) based on spatial model
transitions. The number of hidden states (N ) is selected to be the minimum cycle length
in the training set. Values of N below this value may be used giving a CHMM with more
generality and less specicifity. Values ofN above this value are not used as this would not
allow generation of all training sequence lengths. An initial estimate of Px as the recipro-
cal of the average sequence length is used and given Pc+Ps+Px = 1 an exhaustive one
dimensional search is performed inPc (with fine quantisation) to minimise the square dif-
ference between the theoretical probability probability distribution of cycle length (P (n))
and a distribution calculated from the training sequences.

Initial visible state probability distributions are estimated by aligning each training se-
quence cycle with the set of hidden states, ‘time stretching’ such that the training sequence
length is equal to the number of hidden states in the CHMM. Probabilities are estimated
from the relative number of observations lying completely or partially over each hidden
state as shown in figure 4.2.
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Figure 4.2: Initial Estimation of Observation Probabilities

The transition and observation probability estimates are improved using the Baum-
Welch re-estimation method [13].

5 Object Tracking Using ‘Re-sampling Condensation’

The main drawback with the Condensation algorithm is that sample location is determined
purely by prediction from past observations. Isard and Blake explain [7] that this results in
sample locations clustering round regions of predicted high probability with few samples
representing areas of lower predicted probability. This is a problem in applications where
there are multiple possible outcomes of differing probabilities. Other sampling algoritms
such as Markov Chain Monte Carlo [5] and Genetic Algoritms do not exhibit this problem






as they iteratively re-sample the solution based on previous results. These algoritms are
however unsuitable for ‘real time’ applications due to their high computational cost.

‘Re-sampling Condensation’ is a novel two stage algorithm with no computational
overhead over the standard Condensationalgorithm that, under certain circumstances, gives
more robust tracking results as image information is included in sample location. Re-
sampling Condensation splits the samples into two groups. Sampling of the first group
is performed using standard Condensation (as in section 2.1). Multiple samples are then
selected stochastically from this initial sample set (based on a fitness function) and com-
bined to give a new sample location. This is analogous to a single iteration of a genetic al-
gorithm. In the livestock example three of the initial samples are selected and inter-animal,
front legs and rear-legs characteristics taken from different samples to make up the new
sample. Position and scale are determined stochastically from the mean and standard de-
viation of these parameters in the initial samples selected.

It should be noted that Re-sampling Condensation relies on the variation within the
spatial model being separated into pseudo-independent components (position, scale, inter-
animal, front legs and rear-legs characteristics in the livestock example). These are analagous
to the ‘genes’ in a genetic algorithm. Experimental results (see section 7) suggest that the
more components that a spatial model may be separated into, the better the final solution.
This is intuitiveas, considering a system with 2 independent parameters with N and M pos-
sible states for each parameter, searching using a model with a single parameter results in
a search space of size N*M where as searching using a model with two parameters results
in two search spaces of size N and M respectively. In most tracking examples parameters
are not truly independent, however component separation can still yield improved search
efficiency.

6 Combined Tracking and Behaviour Analysis using
Multiple CHMMs

In section 2.1 it was described how the Condensation algorithm has wider application than
simple object tracking. In particular Black and Jepson [2] use Condensation to track and
classify the trajectories of a coloured whiteboard marker. In their scheme multiple trajec-
tory models are used and the ‘gesture’ classified as one of six actions to be performed.

In our scheme we use the combined tracker and classifier paradigm of Black and Jepson
to model object shape change over time in a ‘Re-sampling Condensation’ framework (see
previous section). In our example ‘normal’ and ‘lame’ behaviours are modelled by seper-
ate CHMMs (see section 4) within the ‘Re-sampling Condensation’ framework. Sam-
ples are allocated to each model initially in even proportion and the CHMM is propogated
through time with the sample. Over time the CHMM that best fits the observed object
‘behaviour’ will dominate (i.e more samples will be associated with that model). A sim-
ple classification can then be performed by comparing the number of samples associated
with each model. A more complex classification method involves summing the posterior
probabilities (relative fitnesses) for samples associated with each CHMM.






7 Evaluation and Discussion

7.1 Evaluation of Tracking Results

‘Re-sampling Condensation’ was evaluated using a test set of 10 sequences of healthy
cows walking from right to left in a farmyard setting as shown in figure 7.1. These se-
quences are of approximately 5 seconds in length at 25fps and contain at least three com-
plete cycles of the CHMM. Ground truth about these sequences was obtained by hand fit-
ting landmark points. Other sequences were also used in the construction of the spatial
(shape) model.

Figure 7.1: Typical Livestock Tracking Scenario

A set of leave one out tests was performed by building a CHMM from 9 of these se-
quences and using the remaining sequence as a test sequence. The training data was ob-
tained by projecting the hand fitted ‘ground truth’ points into the model parameter spaces
and selecting the nearest vector quantisation prototype (a crude but reasonably effective
method). Tracking was performed at various levels of re-sampling (i.e. number of re-
samples vs. number of condensation samples) from 0% (Normal Condensation) to 95%.
The tracking results for the sample of maximum fitness were compared to the hand fitted
ground truth, and statistics such as mean error gathered. Some results at different numbers
(250, 500 and 1000) of total samples are given in figure 7.2.
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Figure 7.2: Mean Error (pixels) of Tracker at Different Levels of Re-sampling

The results in figure 2 show lower average error rates for Re-sampling Condensation
at intermediate levels of re-sampling, although there is a drop off in performance at high
levels of re-sampling. It should be noted that the tracking error is superimposed on the
quantisation error inherent in the quantised model. The average error for the quantised
ground truth data used for training is 4.08 pixels using the crude quantisation method de-
scribed previously. It is encouraging that the tracker can, at optimal re-sampling, improve
on this value. Error standard deviation shows similar trends to mean error although this is
always higher than for the quantised trainingdata. Examining individual sequences around
the optimum operating points indicated by the graphs in figure 7.2, the Re-sampling Con-
densation tracker performs better than Condensation alone (0% re-sampling) in 80-100%






of cases. Even at very low (<20%) and very high (>90%) levels of re-sampling the Re-
sampling Condensation tracker can perform better in more than 50% of cases.

These results are as would be expected as the inclusion of current image information
in sample location improves tracking performance. The fall off in performance at high
levels of re-sampling is due a ‘gene deficiency’ in the initial Condensation set of samples
when few samples are allocated to the Condensation stage. It may be the case that this ini-
tial ‘population’ of samples contains no members with the ‘most correct’ individual char-
acteristics and as such the most correct (highest fitness) solution cannot be found by the
re-sampling stage. It may also be the case that the initial population of samples contains
a high proportion of members with the most correct individual characteristics, in which
case tracking performance will be particularly good. It is as such not desirable to operate
at high levels of re-sampling as tracking robustness is lower than at intermediate levels of
re-sampling. It should also be noted that the optimum level of re-sampling increases with
the total number of samples due to this phenomenon.

7.2 Evaluation of Lameness Classification

The evaluation of the scheme in the detection of lameness was performed on sequences of
humans walking as insufficient amounts of lame cow data were available. The 11 (healthy)
subjects were asked to perform a choreographed lame walking motion in addition to their
regular walking motion. Two sets of each were taken for each person and a set of leave
one out tests performed. The spatial (shape) model used was a B-spline based model (a la
Baumberg and Hogg [1]) rather than the straight line approximationas used for the cows as
people are not well approximated by straight lines. The sum of the posterior probability
(normalised fitness) for each CHMM was recorded over time for each sequence. Aver-
aging the probabilities over time (excluding the first cycle to allow for initialisation of the
tracker) gives an indicationof the relative probabilitythat each sequence is either ‘Healthy’
or ‘Lame’.

Using this method all 44 sequences were correctly classified and in all but two cases
the results were very clear as can be seen in figures 7.3 and 7.4.
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Figure 7.3: Model Probability vs. Time for ‘typical’ Lame Walk Sequences

Two sequences produced results which, although they were classified correctly, were
not as clear (see figure 7.5). On investigation this was found to be related to the ‘lame’
portion 1 of the ‘lame’ CHMM being similar to the healthy walking motion in the rota-
tionally normalised shape representation. The spatial model used to model the cows is not
normalised by rotation and thus would not be subject to this problem. In the non-typical

1N.B. The ‘lame’ walking cycle consists of approximately half a cycle that is identical to a ‘healthy’ walk
and half a cycle that differs. In the ‘healthy’ walking cycle the two half cycles are identical from the view used.
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Figure 7.4: Model Probability vs. Time for ‘typical’ Normal Walk Sequences

lame sequence a significant number of samples were being propagated half a cycle out
of phase with the actual cycle resulting in poor tracking performance. Similarly for the
healthy sequence samples relating to the ‘lame’ CHMM were being propogated in both
phases resulting in reasonable tracking by the lame model compared to the healthy model.
These problems would be eliminated by using a non-rotationally normalised model or in-
cluding relative rotation as an additional stream in the CHMM as out of phase samples
would not be propogated.
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Figure 7.5: Model Probability vs. Time for the two ‘non-typical’ Sequences

8 Conclusions and Further Work

We have presented an extension to Isard and Blake’s Condensation algorithm that includes
current image information in sample location by splitting samples into two sets, a ‘Con-
densation set’ and a ‘Re-sampling set’. The re-sampling stage relies on variation within
the spatial model used being separated into pseudo-independent components which are
then combined stochastically based on the Condensation set ‘fitness’ in a manner similar
to a single iteration of a genetic algorithm. Experimental results show improved tracking
performance over Condensation alone with the existence of an optimal proportion of re-
sampling. We have also shown how multiple Cyclic Hidden Markov Models (CHMMs)
may be used to model the temporal changes in object shape that represent a walking ‘be-
haviour’. These multiple CHMMs may be included in the Re-sampling Condensation frame-
work to form a combined tracker and behaviour classifier. Experimental results using this
scheme to classify the difference between a normal human walking motion and an arti-
ficial lame motion for unseen persons are very encouraging although insufficient ‘lame’
data was available to evaluate this scheme on Livestock. This combined tracker and clas-
sifier paradigm has very wide applicational scope beyond livestock monitoring and could
be applied to areas such as gesture and gait recognition in future work.
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