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Abstract

A system for thetracking and cl assification of livestock movementsispre-
sented. The combined ‘tracker-classifier’ scheme isbased on avariant of Is-
ard and Blakes ‘ Condensation’ algorithm [6] known as ‘ Re-sampling Con-
densation’ in which a second set of samples istaken from each imagein the
input sequence based on theresultsof theinitial Condensation sampling. This
isanalogous to a single iteration of a genetic algorithm and serves to incor-
porate image information in sample location.

Re-sampling Condensationrelieson thevariation withinthe spatial (shape)
model being separated into pseudo-independent components (analogous to
genes). In the system a hierarchical spatiadd model based on avariant of the
Point DistributionModel [16] isused to model shapevariationaccurately. Re-
sults are presented that show this a gorithm gives improved tracking perfor-
mance, with no computational overhead, over Condensation alone.

Separate Cyclic Hidden Markov Models are used to model ‘Healthy’ and
‘Lame’ movementswithinthe Condensationframework inacompetitiveman-
ner such that the model best representing the datawill be propagated through
theimage sequence.

1 Introduction

In recent years there has been much interest in object tracking [6, 1, 16, 15, 12] and tempo-
ral modelling [8, 14, 18, 4]. The combination of object tracking and temporal modelling
givesriseto many exciting application possibilities, for example; Isard and Blake [6] use
atempora mode to improve the speed and robustness of their object tracker. Wren and
Pentland [18] and Davis and Bobick [4] use tempora modelsto classify observed human
movementsand in the case of thelatter usethisinformationto trigger interactiveresponses
inavirtual environment. Johnson et. al. [8] build ajoint behaviour model inwhich avir-
tual human reactsin arealistic manner to observed behaviour in alimited domain. Sumpter
and Bulpitt [ 14] use object tracking and tempora modelling to predict the behaviour of a
flock of ducks or sheep for use in the control system of a robotic sheepdog.
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We combine a stochastic * Re-sampling Condensation’ tracker with multiple ‘ Cyclic
Hidden Markov Models' to model and classify livestock ‘behaviour’. In this paper we
take lameness as an example ‘behaviour’ athough it is hoped that this scheme may be
extended to more complex animal behaviours such as the abnormal behaviour exhibited
by animalswhen on heat (oestrus).

2 Background

2.1 The Condensation Algorithm

Isard and Blake's Condensation (CONditional DENSity propagATION) algorithm [6] isa
simple, yet powerful, way of propagating multipledynamic problem sol ution hypothesi ses
over time using afinite set of discrete samples. The original application of the Conden-
sation agorithm was object tracking in an image sequence in which a model of an object
(spatial and temporal) was fitted to an image sequence. Propagating multiple hypothe-
sises gave improved robustness over single hypothesistechniques such as Kaman filters
[3]. The basic Condensation agorithm is given bel ow;

Repeat (for each sample a each time step):

Select: A sampleis selected stochastically from the previous generation (time
step) based on a‘fithess' measure.

Predict: A single state of thissample at the next time step is predicted using a
stochastic temporal model.

Evaluate: The ‘fithess' of the predicted sample location is evaluated.

Note: Samples may beinitialised randomly or according to some known probability dis-
tribution for thefirst frame.

Condensation has a so been applied to the field of temporal modelling (prediction and
classification) of objects. Johnson and Hogg [9] use condensation to propagate multiple
prediction hypothesisfor pedestrian trajectory classification. Black and Jepson [2] use a
similar scheme with multipletemporal modelsasacombined tracker and classifier to anal -
yse an augmented whiteboard. Walter et. al. [17] use Black and Jepson’s method with
continuous (non-discrete) Hidden Markov Model s to classify the tragjectories of peoplein
an office scene.

2.2 Hidden Markov Models

Hidden Markov Models (HMMs) [13] are used to model observations from a stochastic
process where there is some underlying structure, but observations are not deterministic.
In many cases the exact nature of this processisnot observable (i.e. ‘Hidden'), for exam-
ple speech, however the resulting observations (sound in the case of speech) are. HMMs
model theunderlying processusing afirst order Markov chainand therel ationship between
the process and the observations by a probability distribution (either discrete or continu-
ous). Figure 2.1 illustrates this by modelling the structure of the word ‘hello’ using one
state for each syllable.
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Figure2.1: Modelling theword ‘Hello’ using a Hidden Markov Model

Thismodel of theword ‘hello’ illustratestwo important features of the HMM. Firstly,
athough the Markov chain isonly first order, a tempora history is encoded by limiting
the state transitionspossible. In thisexample state A will aways occur before state B thus
encoding thetemporal ordering of thetwo syllablesin theword. Secondly, if thefour pos-
sible permutationsof syllablesare examined (‘He-10','He-0’,'Hel-10’ and ‘Hel-0'), it can
be seen that an invalid combination is possible (‘He-0'). If the HMM were to be used for
recognition thiswould not be a problem as there is no other word in the English language
that consists of these syllables, however if the HMM were to be used for speech genera
tion thiswould present a problem. HMMs intended for sequence generation or prediction
in general require more complex state transition architectures than HMMs intended for
recognition only.

Rabiner in hisexcellent introductionto HMMs[ 13] liststhree problemsthat need to be
solved in order to useHMMs. Problem 1 isthe eval uation problem, or how the probability
that an observed sequence was produced by a given HMM may be calculated. Problem 2
istherecovery of a‘correct’ sequence of hidden states for an observation sequence. Prob-
lem 3 isthe training problem, or how to optimise a set of HMM parameters so as to best
describe how an observation sequence (or sequences) come about. In addition to these
thereis a fourth problem; prediction. The problemis, given some knowledge of the sys-
tem in the past / present, how can we predict the future behaviour of the system. Thisis
an important, but not widely covered, problem. Thisis possibly dueto speech recognition
(the principal origina use of HMMs) requiring no prediction from the HMM. Prediction
isessentia to our application and is discussed in section 4.

3 Building Spatial Modelsfor Tracking Applications

Previouswork has described how multiple contour models of an object class may be built
[10] and how the variation within these models can be separated into independent com-
ponents[11]. These modelsare avariation on the Point Distribution Model [16] in which
a contour is modeled by a mean shape (described by a set of points) and a set of linear
‘modes of variation’. We have applied this scheme to modelling livestock, building mul-
tiple models of cow outlines and separating the variation of each model into inter-animal,
front legs and rear legs components as shown in figure 3.1.

Each model is discretised by performing vector quantisation on the projections of the
training data in the eigenspaces of the model. Thisresultsin aset of prototypica * states
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Figure 3.1: Separating Object Variation Using a Hierarchical Scheme
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for inter-animal, front legs and rear legs components.

4 Building Multi-stream Cyclic Hidden Markov Models

Cyclic Hidden Markov Models(CHMMs) use ahidden state architecturein which thefirst
and last states arejoined. Thisisillustrated in figure 4.1.

8.

Figure4.1: CHMM Hidden State Architecture

The Multi-stream Cyclic Hidden Markov Model (MSCHMM) isa CHMM with mul-
tiple sets of (discrete) visible states which model observationally independent but related
features of asystem. In our example we model thefront and rear leg pairs as two separate
‘observational streams' based on a single underlying CHMM. It should be noted that con-
tinuous (e.g. Gaussian mixture model based) observation probability distributions could
be used, however these would be computationally more expensiveto evaluate and as such
are not used in the system implemented.

Hidden state transition probabilitiesare initialised by defining parameters P;, P. and
P, asthe probability that the next hidden state remains the same, changes or the current
stateisthelast statein the sequence respectively. If we assumeinitially that these parame-
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tersare the same for each hidden state we get the probability distributiongivenin equation
1for thecycle lengthin states.

— 1
P(n) = PP, PN xWNV+=1 ¢ = pNp, P x % (1)
Where:
n = The Sequence Length
P(n) = The probability of a sequence of length n resulting from the CHMM
N = TheNo. of Hidden Statesin the CHMM
r = TheNo. of Hidden State Repetitions (n-N)

Training sequences are parsed into cycles (of various lengths) based on spatial model
transitions. The number of hidden states (V) is selected to be the minimum cycle length
inthetraining set. Values of N below thisvalue may be used givinga CHMM with more
generality and less specicifity. Values of N abovethisvaueare not used as thiswould not
allow generation of dl training sequence lengths. An initial estimate of P, astherecipro-
cal of the average sequence lengthisused and given P. + P + P, = 1 an exhaustive one
dimensional search isperformedin P, (with fine quantisation) to minimise the square dif-
ference between thetheoretical probability probability distribution of cyclelength (P(n))
and a distribution cal cul ated from the training sequences.

Initial visible state probability distributionsare estimated by aligning each training se-
guence cyclewiththe set of hidden states, ‘time stretching’ such that the trai ning sequence
length is equal to the number of hidden statesin the CHMM. Probabilities are estimated
from the relative number of observations lying completely or partially over each hidden
state as shown in figure 4.2.
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Figure4.2: Initial Estimation of Observation Probabilities

The transition and observation probability estimates are improved using the Baum-
Welch re-estimation method [13].

5 Object Tracking Using ‘Re-sampling Condensation’

The main drawback with the Condensation a gorithmisthat samplelocationis determined
purely by predictionfrom past observations. |sard and Blake explain[7] that thisresultsin
sample locations clustering round regions of predicted high probability with few samples
representing areas of lower predicted probability. Thisisaproblemin applicationswhere
there are multiple possible outcomes of differing probabilities. Other sampling algoritms
such as Markov Chain Monte Carlo [5] and Genetic Algoritmsdo not exhibit this problem

BMVC2000






BMVC2000

as they iteratively re-sample the solution based on previous results. These algoritms are
however unsuitablefor ‘rea time' applications due to their high computational cost.

‘Re-sampling Condensation’ is a novel two stage algorithm with no computational
overhead over the standard Condensation algorithmthat, under certain circumstances, gives
more robust tracking results as image information is included in sample location. Re-
sampling Condensation splits the samples into two groups. Sampling of the first group
is performed using standard Condensation (as in section 2.1). Multiple samples are then
selected stochastically from thisinitial sample set (based on afitness function) and com-
bined to give anew sample location. Thisisana ogousto asingleiteration of agenetic al-
gorithm. Inthelivestock examplethreeof theinitial samplesare selected and inter-animal,
front legs and rear-legs characteristics taken from different samples to make up the new
sample. Position and scale are determined stochastically from the mean and standard de-
viation of these parameters in the initial samples selected.

It should be noted that Re-sampling Condensation relies on the variation within the
spatia model being separated i nto pseudo-independent components (position, scale, inter-
animal, frontlegsand rear-legs characteristicsinthelivestock example). Theseareana agous
tothe‘genes in agenetic algorithm. Experimental results (see section 7) suggest that the
more components that a spatial model may be separated into, the better thefinal solution.
Thisisintuitiveas, considering asystem with 2 independent parameterswith N and M pos-
sible states for each parameter, searching using amodel with asingle parameter resultsin
a search space of size N*M where as searching using a model with two parameters results
in two search spaces of size N and M respectively. In most tracking examples parameters
are not truly independent, however component separation can till yield improved search
efficiency.

6 Combined Tracking and Behaviour Analysisusing
Multiple CHMMs

In section 2.1 it was described how the Condensation algorithm haswider application than
simple object tracking. In particular Black and Jepson [2] use Condensation to track and
classify the trgjectories of a coloured whiteboard marker. Intheir scheme multipletrajec-
tory models are used and the ‘ gesture’ classified as one of six actionsto be performed.

In our scheme we usethe combined tracker and cl assifier paradigm of Black and Jepson
to model object shape change over timein a‘ Re-sampling Condensation’ framework (see
previous section). In our example ‘norma’ and ‘lame’ behaviours are modelled by seper-
ate CHMMs (see section 4) within the * Re-sampling Condensation’ framework. Sam-
plesaredlocated to each model initialy in even proportion and the CHMM is propogated
through time with the sample. Over time the CHMM that best fits the observed object
‘behaviour’ will dominate (i.e more samples will be associated with that model). A sim-
ple classification can then be performed by comparing the number of samples associated
with each model. A more complex classification method involves summing the posterior
probabilities (relative fitnesses) for samples associated with each CHMM.






7 Evaluation and Discussion

7.1 Evaluation of Tracking Results

‘Re-sampling Condensation’ was evaluated using a test set of 10 sequences of healthy
cows walking from right to left in a farmyard setting as shown in figure 7.1. These se-
guences are of approximately 5 secondsin length at 25fps and contain at |east three com-
plete cycles of the CHMM. Ground truth about these sequences was obtained by hand fit-
ting landmark points. Other sequences were aso used in the construction of the spatial
(shape) model.

Figure 7.1: Typical Livestock Tracking Scenario

A set of leave one out tests was performed by buildinga CHMM from 9 of these se-
guences and using the remaining sequence as a test sequence. The training data was ob-
tained by projecting the hand fitted  ground truth’ pointsinto the model parameter spaces
and selecting the nearest vector quantisation prototype (a crude but reasonably effective
method). Tracking was performed at various levels of re-sampling (i.e. number of re-
samples vs. humber of condensation samples) from 0% (Norma Condensation) to 95%.
The tracking results for the sample of maximum fitness were compared to the hand fitted
ground truth, and statisticssuch as mean error gathered. Someresultsat different numbers
(250, 500 and 1000) of total samples are givenin figure 7.2.
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Figure 7.2: Mean Error (pixels) of Tracker at Different Levels of Re-sampling

The resultsin figure 2 show lower average error rates for Re-sampling Condensation
at intermediate levels of re-sampling, although there is a drop off in performance at high
levels of re-sampling. It should be noted that the tracking error is superimposed on the
quantisation error inherent in the quantised model. The average error for the quantised
ground truth data used for training is 4.08 pixels using the crude quantisation method de-
scribed previoudly. It isencouraging that the tracker can, at optimal re-sampling, improve
on thisvalue. Error standard deviation shows similar trendsto mean error adthoughthisis
alwayshigher than for thequantised training data. Examiningindividua sequencesaround
the optimum operating pointsindicated by the graphsin figure 7.2, the Re-sampling Con-
densation tracker performs better than Condensation alone (0% re-sampling) in 80-100%
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of cases. Even at very low (<20%) and very high (>90%) levels of re-sampling the Re-
sampling Condensation tracker can perform better in more than 50% of cases.

These results are as would be expected as the inclusion of current image information
in sample location improves tracking performance. The fal off in performance a high
levels of re-sampling is due a“‘gene deficiency’ in theinitial Condensation set of samples
when few samples are alocated to the Condensation stage. It may be the case that thisini-
tial ‘population’ of samples contains no members with the ‘ most correct’ individual char-
acteristics and as such the most correct (highest fitness) solution cannot be found by the
re-sampling stage. It may also be the case that the initia population of samples contains
a high proportion of members with the most correct individua characteristics, in which
case tracking performance will be particularly good. It is as such not desirable to operate
at high levels of re-sampling as tracking robustnessislower than at intermediate levels of
re-sampling. It should also be noted that the optimum level of re-sampling increases with
the total number of samples due to this phenomenon.

7.2 Evaluation of Lameness Classification

The evaluation of the scheme in the detection of |ameness was performed on sequences of
humanswal king as i nsufficient amounts of lame cow datawere available. The 11 (heathy)
subjects were asked to perform a choreographed lame walking motion in addition to their
regular walking motion. Two sets of each were taken for each person and a set of leave
one out tests performed. The spatial (shape) moded used was a B-spline based model (ala
Baumberg and Hogg [1]) rather than the straight line approximation as used for the cows as
people are not well approximated by straight lines. The sum of the posterior probability
(normalised fitness) for each CHMM was recorded over time for each sequence. Aver-
aging the probabilitiesover time (excluding thefirst cycle to alow for initialisation of the
tracker) givesanindication of therel ative probability that each sequenceiseither ‘ Hed thy’
or ‘Lame’.

Using this method all 44 sequences were correctly classified and in al but two cases
theresults were very clear as can be seen infigures 7.3 and 7.4.

Subject 2: Lame Seq#2 Subject 4 Lame Seg#1l Qubject 5 LameSag#l . Qbjet 6 Laf\eSﬂI#l

Prob
Prob

Prob

Time Time Time Time

Figure 7.3: Model Probability vs. Timefor ‘typical’ Lame Walk Sequences

Two sequences produced results which, although they were classified correctly, were
not as clear (see figure 7.5). On investigation this was found to be related to the ‘lame’
portion* of the ‘lame’ CHMM being similar to the healthy walking motion in the rota-
tionally normalised shape representation. The spatial model used to model the cowsisnot
normalised by rotation and thus would not be subject to this problem. In the non-typical

IN.B. The ‘lame’ walking cycle consists of approximately half a cycle that is identical to a*healthy’ walk
and half acyclethat differs. Inthe ‘healthy’ walking cyclethe two half cyclesare identical from the view used.
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Figure 7.4: Model Probability vs. Timefor ‘typical’ Norma Walk Sequences

lame sequence a significant number of samples were being propagated half a cycle out
of phase with the actual cycle resulting in poor tracking performance. Similarly for the
healthy sequence samples relating to the ‘lame’ CHMM were being propogated in both
phases resulting in reasonabl e tracking by the lame model compared to the healthy modd.
These problemswould be eliminated by using a non-rotationally normalised model or in-
cluding relative rotation as an additiona stream in the CHMM as out of phase samples
would not be propogated.

Subject 10: Lame Seq #2 Subject 1: Normal Seq #1

Time Time

Figure 7.5: Modd Prabability vs. Timefor thetwo ‘non-typical’ Sequences

8 Conclusonsand Further Work

We have presented an extension to | sard and Blake's Condensation al gorithm that includes
current image information in sample location by splitting samples into two sets, a ‘ Con-
densation set” and a‘Re-sampling set’. The re-sampling stage relies on variation within
the spatial model used being separated into pseudo-independent components which are
then combined stochastically based on the Condensation set ‘fitness' in a manner similar
to asingleiteration of a genetic agorithm. Experimental results show improved tracking
performance over Condensation alone with the existence of an optimal proportion of re-
sampling. We have also shown how multiple Cyclic Hidden Markov Models (CHMMs)
may be used to mode the tempora changes in object shape that represent awalking ‘be-
haviour’. These multiple CHMMsmay beincludedintheRe-sampling Condensationframe-
work to form acombined tracker and behaviour classifier. Experimental resultsusing this
scheme to classify the difference between a norma human walking motion and an arti-
ficia lame motion for unseen persons are very encouraging athough insufficient ‘lame’
datawas available to eval uate this scheme on Livestock. This combined tracker and clas-
sifier paradigm has very wide applicational scope beyond livestock monitoring and could
be applied to areas such as gesture and gait recognition in future work.
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