BMVC2000

Integrated Segmentation and Depth Ordering
of Motion Layers in Image Sequences

David Tweed and Andrew Calway

Department of Computer Science
University of Bristol, UK

{tweed,andrew }@cs.bris.ac.uk

Abstract

We describe a method to segment and depth order motion layers simulta-
neously in an image sequence. Previous approaches have tended to ignore the
depth ordering issue or treat it as a post-processing operation. We argue here
that motion estimation and segmentation are crucially dependent on depth
order and hence that the latter should form an integral part of any layering
scheme. Using an explicit model of boundary ownership allowing simulta-
neous assignment of motions to regions and extraction of depth order, the
method fuses colour region segmentations with motion estimates obtained
via block correlation. The motion estimates are then updated using a depth-
dependent partial correlation. Experiments show the approach is effective.

1 Introduction

The problem addressed in this paper is how to segment frames of an image sequence into
regions moving with different motions and to order the regions in terms of their relative
depth in the scene, producindayeredrepresentation [2]. Such layers correspond to
the background and foreground objects and provide an effective means of processing
sequences, able to account for effects such as occlusion, without the need to compute
a full 3-D description. Layered representations have applications in a number of areas,
most notably data compression where they are likely to play a key part of future video
compression standards such as MPEG-4 and MPEG-7. Extracting layers is a difficult
task, sharing many of the problems associated with still image segmentation and having
the additional complications associated with motion ambiguity and depth ordering. These
include those caused by aperture problems, the dependence of the link between boundary
and interior motions on 3-D structure and motion, and occlusion/background uncovering.
Previous approaches to the problem have been based on using colour segmentation,
motion estimation, region or edge tracking, and various combinations of one or more of
these. There is a large body of work on using only motion information in the form of op-
tical flow fields, based on a variety of segmentation techniques [1, 2, 3]. However, these
approaches all suffer from the problem that reliable motion estimation requires model fit-
ting over ‘within region’ pixels, which of course are unknown. Although techniques such
as robust statistics [3] can overcome this to some extent, it remains a significant limitation
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of such schemes. One way to address this is to incorporate colour information to adapt
the motion estimation to the underlying image structure and this has been the approach of
most recent work in the area. For example, in [4], motion and colour measurements are
combined using an MRF framework, whilst in [5, 6] colour segmented regions are used
to constrain the motion fitting. Alternatively, the segmented regions and their boundaries
can be tracked over time to give motion estimates and hence segmentations as in [8] and
[7]. In the main, these combined techniques have proved more effective.

The approach described here also combines colour and motion information in that it
attempts to fuse colour segmentations with motion descriptions obtained using block cor-
relations. The basic principle is to use the block estimates to assign motions to each of the
segmented regions so as to minimise a measure of support based on motion compensated
differences (MCD) and then to group regions exhibiting coherent motion to form the re-
quired layers. The key component is the method used for motion assignment. This is
based on an explicit model of the relative depth of adjacent regions, and helnoeraf-
ary ownershig10], which predicts the expected distribution of MCD energy for a given
motion and depth configuration. Testing these against the data then allows the ‘most
likely’ configuration to be selected. In effect, the depth ordering constrains possible in-
terpretations of the data, resulting in more robust motion assignment. It also means that
depth ordering is automatically generated as part of the segmentation process, as in the re-
cent approaches of [8] and [7], but in contrast to previous approaches in which it has been
treated as a post-processing operation [9, 10]. The resulting depth ordering is also used to
refine the motion estimates within blocks straddling motion boundaries by employing a
depth-dependent partial correlation technique in which the knowledge of boundary own-
dership is used to reduce bias when estimating the motion of occluded regions. These
estimates are fed back into the assignment and grouping process to give updated layers.

A motion segmentation algorithm based on the boundary ownership model was orig-
inally described in [11]. In this work we report significant improvements to the motion
assignment and layering processes, and describe the depth dependent partial correlation
for improving the motion estimates on each layer. Details of the motion assignment tech-
nigue are given in the next section, followed in Section 3 by an overview of the layering
algorithm. Results of experiments on real sequences are presented in Section 4.

2 Boundary Ownership and Depth

Our starting point is that want to assign motions to pre-segmented regions based on how
well their interior pixels match those in the next frame if the motions are applied. The
difficulty is that in real sequences interior pixels will often have low intensity variation,
making comparison between motions problematical as many motions will fit the data
equally well. This isnotthe case for pixels in the vicinity of boundaries - application of
a motion may take some pixels into an adjacent region in the next frame, giving larger
intensity differences. Hence, for such low variance regions, the motion can sometimes
be deduced from pixels near the boundary. However, as illustrated below, the location
of such pixels and the expected MCDs depends not only on the motions assigned to the
regions but also their relative depth. This observation underlies our technique.

Consider the example in Fig. 1a, in which two constant intensity regigrend A,
have the motions; andv,, and region\; corresponds to a surface nearest the camera, ie
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Figure 1: Boundary support regions (hashed) for both depth orderings of two constant

intensity regions having different motions. The regions indicate non-zero MCD values
for (a) motionvs and (b) motionv,, and thus determine boundary ownership.

occluding that associated witl,. Comparing MCD values for both motions at all pixels
reveals that they are zero everywhere for motgrand only non-zero fov, within the
hashed region to the right of the boundary. The lattgvis—v2)-n| pixels wide, wheren
is the exterior normal to the boundary of regitép, and it results both from the motions
andthe depth ordering. As shown in Fig. 1b, the reverse depth ordering gives a similar
region but on the other side of the boundary and in favowrahstead ofv;. Thus, given
the motions, the depth ordering is indicated by the location of the MCD energy on either
side of the boundary. As pointed out by Darrell and Fleet [10], the key hdreuadary
ownership- occluding regions ‘own’ the boundary and this is reflected by ‘support’ for
their motion within the hashed regions. We call thBseindary Support RegioiBSRS).
However, the BSRs and supported motions aren’t unique. For example, reversing the
motion/depth configuration for both cases in Fig. 1 results in the same BSRs and sup-
ported motions. As discussed in [11], if we allow the possibility of the regions having the
same motion (butotdifferent motions when they’re at the same depth, which will be rare
in real sequences), there are two possible BSR patterns, each corresponding to 5 possible
motion/depth configurations. Of the latter, 3 correspond to both regions having the same
motion but a different depth configuration; in the context of motion segmentation these
can be regarded as equivalent. It also turns out that for a given motion assigned to one
region, one of the two possible BSR patterns uniquely defines both the motion and the
relative depth of the other region. This gives an ambiguity of two possible configurations
for the remaining BSR state. Thus, although the BSRs are not uniquely associated with
particular motion/depth configurations, they provide constraints on the possible interpre-
tations of the MCD energy and it is this we use in the motion assignment.

2.1 Motion Support and Assignment

Motivated by the above, we adopt a support measure for assigning motions to regions
based on two complementary terms: iatra-region term which represents support for

a motion assignment amongst interior pixels; andraé@r-regionterm which represents
support from pixels within the predicted BSR given a depth ordering. In other words,
we test a given motion assignment by looking for support both from within the regions
themselves and within the BSR for each possible depth ordering. This approach has two
advantages: (i) If the intra-region support is ambiguous, then the inter-region contribution
will aid in determining motion assignments which are ‘valid’ interpretations of the data,
ie supportive MCD values will only be found in the BSR corresponding to the ‘correct’
motion assignment and depth ordering. In effect, each motion/depth configuration pre-






BMVC2000

dicts where to look for supportive MCD values, and the configuration with best overall
support is selected; (ii) as depth ordering is an integral part of the assignment process, the
scheme automatically gives the most likely depth ordering for the best configuration.

Both of the above terms are based on a measure of the degree to which a motion best
fits a given region of pixels. In the segmentation algorithm described in Section 3 we
reduce the amount of computation and the risk of overfitting by making local assignments
based on two candidate motions. The support measures are then defined in terms of the
log ratio of the respective MCDs for within region pixels, ie we take less account of
pixels where both motions fit equally well and more account of those for which one of the
motions is significantly worse. For two motiorg andv;, the measure of support for
motioni within some region\ is defined as

B di(§) di(¢)
G = > TA[ > AR 1)

EEA,Gi(£)>0 CENeNA

whered;(£)=log [MCD; _;(£)/MCD; (£)| measures the support&for motioni based on
the motion-compensated differences for the two motions, ie for fraq(@$ andx, ()

MCD; (&) = x1(§) — X2(§ — vi) (2)

The inner summation term in eqn (1) represents the degree of within region support for
motioni within the neighbourgV; of £. This gives greater weight to contributions from
clusters of supporting MCD values, whilst decreasing the influence of isolated support.
Thus, 5 (A) will be large if the MCD for motion is significantly less than that for motion
1 — i over sets of spatially coherent pixels across the region.

GivenP regions and the two candidate motions, we denote the combined support mea-
sure for a motion assignmeni = (my, .., Mp_; ) and depth assignmeht= (o, ..,1p_1)
by a(m, 1), wherem, = i if motioni is assigned to regiopandl, is the depth index for
regionp. This is defined as

P P-1 P
am,1) = opm + > Y offim, (3)
p=1

p=1 g=p-+1

whereqy; and al”"i denote the intra-region and inter-region support terms, respectively,
andlpq indicates the relative depth ordering of regignandgq, ie l,q = 0 if I, < lq and
log = 1if I, > lq. The former are then defined using support measire) as

api = Bi(Ap) apgi = Bi(Apg) g = Br-i(Apg) (4)

whereAgqi andA,lqu are the BSRs for assigning motioto regionp and motionl — i to
regiong for the two possible depth orderings. Note within the BSRs the expected motion
to be supported depends on the depth ordering, eg if rggisroccluding then motion

i should be supported within the BSR, whilst motibr- i should be supported for the
reverse ordering. Using the above definitions, motion segmentation &f thgions is
achieved by seeking the motion and depth assignmaraadl which maximisex(m, 1)

in egn (3). This gives the ‘best’ motion assignment and the corresponding depth ordering.

In the next section we describe how this is incorporated into the layering algorithm.
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Figure 2: Block diagram of motion layering algorithm.

3 Integrated Layering and Depth Ordering

Fig. 2 shows the main components of the layering algorithm: colour segmentation and
motion estimation, motion assignment, motion refinement, and region linking.

3.1 Colour Segmentation and Motion Estimation

Given two frames andn + 1, the first stage consists of deriving a colour region segmen-
tation for framen and computing block based motions estimates between the two frames,
where the latter take blocks in frame n into corresponding blocks in framd. The
segmentation needs to provide good estimates of the colour region boundaries, and in
particular to capture all of the motion boundaries. We assume that the latter are a subset
of the former, ie regions of different colour can move together but not vice versa, and so
slight over-fitting of the segmentation is acceptable and preferred to under-fitting. In the
experiments we used the segmentation algorithm developed by Sinclair [13] (also used by
Smith and Cipolla [7] in their boundary tracking technique). This combines a colour edge
extraction process with region growing using seeds at peaks in the Voronoi image derived
from the edge map. Essentially, regions are grown until meeting an edge or a pixel whose
colour is too far from the local region mean. We found this gave reasonable segmentations
over a range of different frames and sequences without excessive computational cost.

The block based motion estimates are obtained using normalised correlations per-
formed via the frequency domain and applied to blocks with 50% overlap. Although the
estimates have limited resolution around boundaries, they have the advantage being less
sensitive to noise, than for example optical flow estimates, and are more likely to avoid
aperture problems. They also provide a concise description of the motion field which has
computational benefits. The present work uses a simple translational model of the block
motion at a single resolution, although in principle the method could also use multireso-
lution and affine estimates obtained using the techniques described in [12] for example.
Each correlation also provides both a certainty measure for the estimate via its peak value
and an indication of its covariance via the energy distribution about the peak [12].

3.2 Motion Assignment

The next stage is to fuse the colour and motion information by assigning motions to colour
regions using the set of estimates produced by the correlations. This is done within the
same block structure used by the latter, ie given a set of colour re§ie4,, .., Ap) and
a set of block8=(B;, .., By), we seek to assign motions in blokko the set of regions

Fk:{BkﬂAi | iZO..N,BkﬂAi#O} (5)
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Figure 3: Layering process: (a) colour segmentation and block based motion estimates;
(b) assignment of motions to regions; (c) layers formed by region linking.

This lets spatially variable motion fields for large colour regions span several blocks.

The assignment process involves two steps. First, an initial assignment is made based
on the assumption that each block will contain at most two motion regions and that each
motion can be obtained either from the block or one of its 8 neighbours. The latter tackles
the limited resolution of the block estimates, whilst the former reduces both the computa-
tional cost of the assignment process and the risk of overfitting the motions, while being a
reasonable assumption for a large majority of blocks if the block size is chosen carefully.
Thus, for a given block, we select the two ‘best’ motions from the 9 local estimates by
comparing the intra-region support measures as defined by egns (1) and (4) within the
regionsl’k for each distinct motion. The two motions which give the two largest support
sums computed over all regions are then selected and used as candidate motions to as-
sign to the colour regions using the method described in the previous section, ie we find
the motion/depth configuration which maximisean, 1) in egn (3). If only one distinct
motion is present amongst the neighbouring blocks then the centre block is defined as a
single motion block and all its regions assigned the same motion. The small number of
regions in each block means that maximising eqn (3) can be done easily using an exhaus-
tive search, with the intra- and inter- region terms being computed prior to the search and
then the support for each configuration generated by the summation of the relevant terms.

Following this initial assignment, the assignments made in neighbouring blocks are
merged. For each block, this is achieved by comparing each of the possible motion seg-
mentations indicated by the 9 neighbours and selecting that which maximises the support
measure used in the initial assignment. There are two benefits from this merging process:
isolated assignment errors caused by bad motion estimates for example can be corrected
if better assignments have been made in neighbouring blocks; and blocks containing more
than two motion regions can be identified and correctly assigned if the additional motion
regions have been detected in neighbouring blocks. (Note this process implicitly creates
the linkages between neighbours which are used in section 3.4 to group consistently mov-
ing pixels into moving patches corresponding to objects in the scene.) The result for each
block is a division of the regionBy into two sets, each representing a distinct motion
region with an associated depth order. Fig. 3 illustrates an example of the process, in
which a circular region consisting of three colour sub-regions is moving to the right on a
stationary background. The motion estimates obtained from the correlations are shown in
their respective blocks in Fig. 3a and the result of the motion assignment is shown in Fig.
3b.
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3.3 Motion Refinement

In the above process, regions within blocks which straddle motion boundaries may obtain
their motion assignment from neighbouring blocks. Although this may be acceptable
in some cases, it limits possible variation of the motion field and may lead to incorrect
assignments. This is addressed by using the motion segmentations obtained in such blocks
to perform partial correlations and so derive updated motion estimates [12]. In essence,
for a two motion region, we set all the pixels in one region to 0 and correlate with the
corresponding block in the next frame. However, we also make use of the depth order of
the motion regions. For an occluded region, simple partial correlation may lead to biased
estimates caused by the boundary, since the boundary carries the motion of the occluding
region, not that of the occluded region. Hence, when estimating an updated motion for
the latter, we attempt to reduce the effects of the boundary by smoothing off the intensity
values at pixels near the region boundary prior to correlating. Specifically, denoting the
two motion regions in a block by, andIl,, we generate ‘nulling’ functions

1 if £ €1, 1€ — BND(§)| > Dj
n(§) =9 r(§—BND)|) if §ell,|{—BND()| < Dj (6)
0 otherwise

whereBND(¢) is the closest pixel t§ on the boundary between the two motion regions
andr (x) is a monotonically decreasing function such th&;) = 1 andr(0) = 0. We set

D; to 0 whenll; is occludingIl; _; and to a non-zero value (depending on the sizH;pf
whenlI; is occluded. To get the new motion estimates for regioa correlate the nulled
block n;(£)x; (&) with the corresponding block in the next frame. This is repeated for the
second motion region. The new motion estimates obtained from the partial correlations
are used to derive updated assignments in the boundary blocks and their neighbours.

3.4 Region Linking

The final stage involves grouping together motion regions which exhibit coherent motion.
This is done using a region-adjacency graph defined within the block structure. After
the assignment process, each block has a motion segmentation — typically consisting of
one, two or possibly 3 motion regions — and we seek to link these based on their assigned
motions as follows: For a given block, each of its motion regions are compared with those
in its four neighbours and a link is formed between two regions if they are contiguous,
their depths compatible and their motions are sufficiently close. Where this gives a region
linking to two different regions in the same block we keep the link to the most similar.
This gives groups of connected motion regions with a common depth corresponding to
the required layers. An example is shown in Fig. 3c. (The outer nodes of the graph for the
circular region are linked to the boundary, indicating ownership of it and hence the depth
order.)

4 Experiments

Fig. 4 shows contributions t6 (eqn (2)) from individual pixelg for the block shown in
(a), with whiter indicating more certain of the choice of motion. Itis clear the background
concrete is in one motion class while the hat brim is in the other. The body of the hat is as
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Figure 4: (a) Local grey level segmentation; (b) intra- and inter- region support values for
background motion; (c) same as (b) for head motion; (d) final motion assignment.

@ (b) © @

®
Figure 5: (a,b) ‘Nulled’backgroundblocks; (c) correlation has peak ffaregroundmo-
tion; (d,e) as (a,b) with smoothing from eqn (6); (e) correlation with correct peak

ambiguous (due to its extreme ‘flatness’). Note this doesn’t necessarily mean a constant
MCD value; as here noise can have a disproportionate effect, as evidenced by the presence
of small clusters within the hat for both motions. However the strong structures along the
boundariesin (c) give BSRs showing it is moving with the brim above the background, as
shown by motion segmentation (d).

Fig. 5a-c shows that direct partial correlation can produce the wrong result if sufficient
hipass energy around a foreground edge is included in a background correlation: although
there is a peak at the background motion position, it is dominated by the peak in the
smear corresponding to the foreground ‘edge’ motion. Fig. 5d-f shows that smoothing
removes enough energy around the edge to give a correct background motion estimate.
Fig 6 shows examples for the foreman and hands sequences. For each row, image (a)
shows the local segmentation results after neighbour correction; the two greylevels (which
correspond to the local motion label) do not match as they are assigned purely locally;
image (b) shows the region adjacency graph (black links) overlaying the block structure
(straight white lines) and detected motion boundaries (white outline); image (c) shows
the foreground component for the foreman examples and a the two depth components for
the hands image, with the lighter one being the foreground region. The hand example
shows the two foreground components. Note that they are judged to be at the same depth
because depth cannot be determined using BSRs unless occlusion is occuring.

5 Conclusions

We gave a local layer model relating patterns of MCD energy along boundaries to mo-
tion/depth configurations, giving a motion segmentation algorithm usiteyior and
boundarnyinformation for greater robustness. Joining local results using motion and ‘pixel
classification’ similarity produces a global set of layers. Future work will investigate us-
ing a temporal window to gain robustness and produce a more compact representation.
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(3a) (3b) (3c)

Figure 6: Examples from the foreman and hands sequences of (a) local motion segmen-
tations; (b) region adjacency graphs (black links) overlaid on block structure and motion
boundaries (white lines); (c) foreground component(s)
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