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Abstract

A shape-based method for multi-view 3-D object representation and recogni-
tion is introduced and explored in this paper. 3-D objects are recognised by a
small number of images taken from different views. The paper addresses the
issue of automatic selection of the best and the optimum number of views for
each object.

The object boundary of each view is considered as a 2-D shape and is
represented effectively by less than ten pairs of integer values. These values
include the locations of the maxima of its Curvature Scale Space (CSS) image
contours. The CSS shape descriptor is expected to be selected for MPEG-7
standardisation. An unknown object is then recognised by a single image
taken from an arbitrary viewpoint.

The method has been tested on a collection of 3-D objects consisting of
15 aircrafts of different shapes. Each object has been modelled using an op-
timised number of silhouette contours obtained from different view points.
This number varies from 5 to 25 depending on the complexity of the object
and the measure of expected accuracy. A comprehensive analysis of the per-
formance of the system has been given in this paper as the number of views
varies.

Around ten silhouette contours corresponding to random views are sepa-
rately used as input for each object. Results indicated that robust and efficient
3-D free-form object recognition through multi-view representation can be
achieved using the CSS representation even for large database retrieval ap-
plications.

Introduction
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There are two major methods of data acquisition in 3-D object representation. In laser-
based systems, range data is produced which essentially records the distances between
the camera and different points of the object. In image-based systems, a CCD camera is
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used to produce 2-D images from the object. In both methods, the 3-D object is finally
represented by a number of features extracted either from the range data or from 2-D
images. While the range data provides more accurate information about the surface of
the 3-D object, the laser-based systems are more expensive and the related recognition
methods are more time-consuming. The computational cost of a method has recently
become much more important in search and retrieval from large databases. Although
hierarchical methods, and different indexing techniques have been introduced to narrow
down the search space in such applications, the need for rapid matching methods to find
the best matches among the remaining candidates still exists.

A large number of 3-D object representation methods have been introduced in the
literature. They can be categorised based on the data acquisition techniques or the type
of descriptors they extract from this data to represent the 3-D object. It is also to be
mentioned that some methods impose certain restrictions on the classes of geometrical
objects that can be handled.

In [11], parallel lines and ellipses are used to describe different view points of an
object. A strategy is suggested to recognise an object from an unknown viewpoint. The
method is based on earlier works by Brooks [6] which has been modified later on by others
[9][10]. In [15], a model is established from a large number of viewpoints taken from a
video sequence. The input of the system is also a video sequence of an unknown object.
The system first builds a 2-D representation of the object. If the representation matches
one of the objects of the database, it is modified based on new information extracted from
the new sequence. Otherwise the object is recognised as a new one and its representation
is stored. The number of views may be reduced with a more sophisticated preprocessing
[5]. Representation with multiple views and recognition using a single view was further
proposed in [7]. The number of viewpoints used to represent a complex object was down
from about2000 in [15] to 20 — 30 as reported in [7]. Shape [16][8] and color [13]
features have also been used in 3-D object representation. The problem with appearance-
based methods [12][14] is that the technique is influenced by illumination conditions and
the background.

While most 3-D object representations are complicated and inefficient, conventional
multi-view representations are based on a large number of views and can not be used in
many applications such as retrieval from large databases. Multi-view representations have
not yet successfully dealt with the following issues:

e What is the optimal number of views?

e How to select the optimal views?

In this article, we propose a method for automatic selection of optimal views of an
object. In order to represent an object efficiently, we eliminate similar views and select
a relatively small number of views using an optimisation algorithm. This number varies
from 5 to 25 depending on the complexity of the object and the measure of expected
accuracy.

To identify an unknown object from a single viewpoint, its representation is matched
with all images of the database and the best matches are retrieved and displayed. In
our experiment with a collection of 15 toy aircrafts of different shapes, we observed that
almost always, the first output of the system is the same object as the input query.

The maxima of Curvature Scale Space (CSS) image have already been used to rep-
resent shapes of boundaries in similarity retrieval applications [3]. The representation
has been proved to be robust under similarity transformation which include translation,
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scaling and changes in orientation. The representation is also robust under general affine
transforms [1].

The following is the organisation of the remainder of this paper. In section 2, CSS
image is reviewed and the CSS matching is briefly explained. Section 3 is devoted to
the application of the method in multi-view object representation where the optimisation
algorithm and related experiments are explained. Section 4 represents the results and
concluding remarks are presented in section 5.

2 Curvature Scale Space image and CSS matching
Consider a parametric vector equation for a curve:

[(w) = (x(u),y(u))

whereu is an arbitrary parameter. The formula for computing the curvature function can
be expressed as:
T(u)y(u) — 2(u)y(u
() = EO050) — i) 0
(@2 (u) + 92 (u))*/

Equation (1) is for continuous curves. In order to calculate the curvature of a digital
curve, we use the idea ofirve evolutiorwhich basically studies shape properties while
deforming in time.

If g(u,o) is a 1-D Gaussian kernel of width, then X (u, o) andY (u, o) represent
the components advolvedcurverl’,,,

X(u,0) =z(u) *g(u,0)  Y(u,0) =y(u)*g(u,o)

according to the properties of convolution, the derivatives of every component can be
calculated:

Xu(u,0) = x(u) * gy(u,0) Xyu(u,o) = x(u) * guu(u, o)

and we will have a similar formula fdr, (v, o) andY,,(u, o). Since the exact forms of

gu(u, o) andg,,(u, o) are known, the curvature of an evolved digital curve is given by:

Xu(u,0)Yyu(u, o) — Xyu(u,0) Yy (u, o)
(Xu(u,0)? + Yy (u,0)?)3/?

k(u,0) = (2)
As ¢ increases, the shape Df changes. This process of generating ordered se-
guences of curves is referred to as the evolution.of

2.1 Curvature Scale Space image

If we calculate the curvature zero crossingd'gfduring evolution, we can display the
resulting points in(u, o) plane. For every we have a certain cuni, which in turn,

has some curvature zero crossing points.cAacreasesl’, becomes smoother and the
number of zero crossings decreases. Wihdrecomes sufficiently high,', will be a

convex curve with no curvature zero crossing, and we terminate the process of evolution.
The result of this process can be represented as a binary image called CSS image of the
curve (see Figure 1).
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Figure 1: a)Shrinkage and smoothing of the curve and decreasing of the number of cur-
vature zero crossings during evolution. b)The CSS image of the shape. Note that for each
segment of the shape there is a contour in the CSS image.

As seen in Figure 1, the CSS image consists of several arch shapes contours, each
related to a segment of the shape. For large contours, the corresponding segments are
marked in this Figure. This shape is finally represented by the locations of the maxima of
its CSS contours. Small contours of the CSS image are related to noise or small ripples of
the curve. In order to avoid complicated and inefficient matching, small maxima are not
included in the representation.

2.2 Properties of the CSS image

The CSS representation is robust with respect to scale, noise and change in orientation.
A 2-D rotation of the object usually causes a circular shift on its representation which is
easily determined during the matching process. Note that the effect of a change in the
starting point is also the same. Noise may create some small contours on the CSS image,
but the main contours and therefore the corresponding maxima remain unaffected.

Compactness is another aspect of the CSS representation. A shape is represented by
about less than ten pairs of integer values which can be determined without any ambiguity.
The matching algorithm which compares two sets of representations and assigns a match
value as the measure of similarity between the shapes is also simple and fast.

Another property of the CSS image is that it retains the local information of the shape.
Every contour of the CSS image corresponds to a concavity or a convexity of the shape.
A local deformation of the shape mainly causes a change in the corresponding contour
of the CSS image. Using this property, one can include more local information about the
shape in the CSS image.

2.3 Curvature Scale Space Matching

The algorithm used for comparing two sets of maxima, one from the input (also called
image and the other from one of the models, has been described in [2]. The algorithm






Figure 2: One view of each object of the database.

first finds any possible changes in orientation which may have been occurred in one of the
two shapes. A circular shift then is applied to one of the image maxima to compensate the
effects of change in orientation. The summation of the Euclidean distances between the
relevant pairs of maxima is then defined to be the matching value between the two CSS
images.

The following is a condensed version of the algorithm which includes the basic con-
cepts.

e Apply a circular shift to all image maxima so that thecoordinates of the largest
maxima, one set from the image and the other from the model become identical.

e Starting from the second largest maximum of the image, determine the nearest max-
imum of the model to each maximum of the image.

e Consider the cost of the match as the summation of the Euclidean distances between
the corresponding maxima.

¢ If the numbers of the image and the model maxima differ, add tbeordinates of
the unmatched maxima to the matching cost.

3 Multi-view object representation

The underlying idea is to model a 3-D object using a small number of silhouette contours
obtained from different viewpoints. The difficulties in implementing this idea include
occlusion, transformations and segmentation.

Occlusion occurs when some parts of the objects hide behind the other parts. As a
result, the 2-D boundary contours of the objects are damaged severely. The CSS repre-
sentation can deal with minor occlusion as it affects the shape locally and only one or
two CSS maxima may be affected. However, major occlusions must be dealt with by in-
creasing the number of viewpoints used to represent the object. The optimum number of
viewpoints depends highly on the geometry of each individual object and varies from one
to another. Since each view is represented by a small size feature vector, and the matching
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process is very fast, this method can be used in retrieval applications dealing with a large
number of objects, each represented by a number of viewpoints.

Affine transformation is another phenomenon which occurs in multi-view object rep-
resentation. It is important for the features extracted from the images to be affine in-
variant. It has been shown [1] that the CSS representation is robust under general affine
transforms.

Segmentation of the images is necessary to extract the boundary of objects prior to
CSS computation. This is not always an easy task and can not always be carried out
automatically. Interactive methods [4] may be used in the case of complicated scenes.
Our experiments were carried out on a collection of 15 toy aircrafts. A video sequence
was prepared from each object using a 3CCD digital video camera. The colorimages were
then grabbed from the video sequences. In order to avoid a complicated pre-processing
stage and segmentation errors, the objects were put on a simple stand and illuminated
by two lamps against a dark background. One view of each object of our database is
represented in Fig. 2.

From the video sequence, a number of images from each object were grabbed from
different views. On averagé3 images per object were grabbed at this stage. Fig. 3(a)
shows all views of a particular object. In order to eliminate similar views and achieve
an efficient representation, we introduced an algorithm for automatic selection of optimal
views as explained in the following subsection.

3.1 Optimal view selection

When an object is pictured from a large number of viewpoints, it is likely that some of
the resulting images are similar and convey no additional information. As a result, an
algorithm is required to identify the number of images needed to represent an object. We
use the CSS representation and its associated matching algorithm to measure the similarity
between two differentimages grabbed from a single object. The algorithm is as follows.

1. Obtain many views of the object from different viewpoints. Tjtle object will
haven; views:
‘/1(0]')7 ‘/2(01')7 ooy an (Oj)

2. Segment the images obtained in step 1 to recover the boundary contours. For each
boundary, compute its CSS image and extract the maxima of this image to obtain:

CSS(Vl (Oj))7 CSS(‘/l (Oj))7 ceey CSS(V}H (Oj))

3. Select a threshold valuevhich will be used to define which views are similar. If
the matching cost between two views is less thiney are marked as similar.

(M_cost(CSS(V;),CSS(Vi)) < t) = Sim(V;, Vi) = TRUE

4. Calculate the matching cost between each representation, obtained from a contour
in step 1, and all other representations, obtained from other contours. If the match-
ing cost is less that) declare the two views as similar. Assign a ran& each view
defined as the number of views that are similar to it.

r(V;) = sizeof{Vx| Sim(V;,Vy) = TRUE}
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Figure 3: a)An object of our database is initially represented by akibutews. b)Top:
The reduced set of views after view selectidof views are selected in the case of 0.3.
Bottom: Input views10 views are randomly selected to be used as queries.

5. Make a sorted list of all views. Each view will have a pointer to other views
similar to it.

L={V;,Vi,. Vi] r(V;) >r(vg) >..>r(V))}
6. Start from the top of. and place the first view in the s€tof characteristic views.
Remove all views similar to the first view @f to obtain a reduced list.

7. Move down the reduced lidt and repeat the procedure in 6 until the end.dé
reached.

At the end of this process, the s&twill contain the full set of characteristic views of
the input object determined automatically. The result of this process for the object of Fig.
3(a), is presented in top of Fig. 3(b).

Note that the algorithm involves the matching of each view of an object with all other
views of the same object, and it must be applied to all objects. In the case of large
databases, the process may be time consuming; however, it is done off-line and has no

effects on the recognition stage which compares the input query to all selected views of
different objects.
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t 0 01} 025] 03| 035] 04 05| 081 1.0
Ng 53| 38 | 23 20 | 175 156 | 13 | 7.7 | 5.7
SR. Q)| 97| 97 | 98 98 | 96 94 93 | T | 67

Table 1: The success rate, S.R. and average number of images perapjémtdifferent
values of threshold value

3.2 Recognition experiment

After selecting the optimal views of each object, the related representations of them, con-
sisting of the locations of maxima of their CSS image contours were stored. A pointer to
the related object was also stored with the representation.

In order to test the performance of the method, we recorded another video sequence
from each object. A set of0 test images were then randomly grabbed from each se-
guence. For the object of Fig. 3(a), this set is presented at the bottom of Fig. 3(b). After
extracting the boundary of the objects and computing the CSS images of them, the max-
ima of these images were used to find similar images from the database produced by the
automatic view selection algorithm.

Each test image was then used as an input query and the system was asked to retrieve
all similar images based on the CSS representation. We observed that in almost all cases
the recognition was possible as the first output of the system was another view of the same
object. The results are presented in the following section.

4 Results

The key parameter which most affects the resultsisthe number of images used to
represent thgth object. This parameter varies from an object to another and therefore we
use its average, as follows.
1 M
Ng = MZ nJ
j=1

wherel is the number of objects. Both; andn, are controlled by the threshold value
t in the view selection algorithm as seen in Fig. 4(a) and table 1.

We used different values efand obtained different values fay,. In general, higher
n, leads to a better results. However, it is not always the case and there is an optimum
number forn, which must experimentally be determined for each collection of objects.

In the first row of table 1 = 0 means that no optimisation has been made and all
initial views have been used to recognise the models.

For our collection, the best result can be achieved by considering the threshold value,
t, as0.3 and usingr, = 20 images per object. Under this condition, where each object is
represented by almo86 views, the recognition rate @8 % was achieved.

In Fig. 4(b) the success rate for different values of observed outputbave been
plotted. If at least one of the firé¥ outputs of the system represents the same object as
the input query, then the result for that query is considered as a success. For lower values
of n,, egn, < 15, if the first output of the system does not represent the correct object,
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Figure 4: a) The average number of views per object is directly related to the threshold
value,t. See subsection 3.1. b) The success rate increases as the number of views per
object increasesV is the number of observed outputs.

the second or third outputs are likely to do so. In the case of large databases, it is crucial
for n, to be as small as possible. The output of the system is then verified by the user
who will be able to select the correct object among the firgiutputs of the system.

As shown in table 1 and Fig. 4(b), even if we consider only the first output of the
system, in a wide range of threshold valueamely from0.1 to 0.35, a very high success
rate can be achieved.

Overall, the results indicate that by representing an object with several views, recogni-
tion based on the first output of the system is feasible. At the same time, in image database
approach, where the user verifies the output of the system, the number of standard views
can be reduced.

5 Conclusions

The Curvature Scale Space representation has already been used for applications such as
shape recognition and shape similarity retrieval. It has also shown robustness under gen-
eral affine transforms. In this paper, we introduced a shape-based method of multi-view
3-D object representation and recognition. Each view of the object was represented by
the locations of the maxima of the CSS image of its silhouette contour. Since the optimal
number of views depends on the geometry of the object, we proposed a new method for
automatic selection of optimal views. We then tested the method on a collectiGriay
aircrafts with different shapes.

Results indicated that fast and efficient recognition of 3-D objects can be achieved
through CSS-based multi-view representation and recognition.
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