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Abstract

Tracking interacting human body parts from a single two-dimensional view is
difficult due to occlusion, ambiguity and spatio-temporal discontinuities. We
present a Bayesian network method for this task. The method is not reliant
upon spatio-temporal continuity, but exploits it when present. Our inference-
based tracking model is compared with a CONDENSATION model aug-
mented with a probabilistic exclusion mechanism. We show that the Bayesian
network has the advantages of fully modelling the state space, explicitly rep-
resenting domain knowledge, and handling complex interactions between
variables in a globally consistent and computationally effective manner.

1 Introduction

When tracking multiple overlapping objects under real-world conditions, ambiguities
arise due to distracting noise, mis-matching of the tracked objects, and the possibility
of occlusion. If the objects are part of the same articulated entity, such as the human
body, domain knowledge can be used to resolve some of these ambiguities. A common
and robust approach for real-time tracking is to combine multiple visual cues [9, 10]. In
the domain of cues such as skin colour and motion, body parts such as hands can become
virtually indistinguishable. Therefore joint tracking of the body parts must be performed
with an exclusion principle on observations [7, 5]. Often body motion may appear dis-
continuous since the hands can move quickly and seemingly erratically, therefore methods
such as Kalman filtering that are strongly reliant upon well-defined dynamics and tempo-
ral continuity are generally inadequate. However, a wide range of domain knowledge is
typically available to reduce reliance on spatio-temporal consistency.

In order to deal with these problems of occlusion, ambiguity and discontinuous mo-
tion, a framework is required for representing domain knowledge and reasoning about
object associations over time without sole reliance on temporal continuity.Bayesian Net-
works[6, 2] provide such a framework, and enable the full set of possible hypotheses to
be simultaneously considered in a consistent and probabilistic manner. Using Bayesian
Networks, the semantics of occlusion can be represented explicitly. In this work we
present a Bayesian Network approach to tracking a person’s head and two hands in near
frontal views. The advantages of our method are highlighted by comparing it with a
CONDENSATION-based tracker that uses an observation exclusion principle.
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2 The Nature of Tracking Interacting Body Parts

Tracking the head and potentially overlapping hands of a single person is an ideal example
of tracking under ambiguity and occlusion. Given a single near-frontal camera view of
the subject, the hands can occlude each other and the face. Using simple visual cues such
as motion and skin colour, the two hands are often indistinguishable. Here we take a
view-based approach in which motion (ie: frame differencing), skin colour and coarse
intensity-based orientation measures are extracted from a near-frontal view of a subject.
More details can be found in [8]. Under these circumstances, the head skin cluster can be
tracked reliably using the mean shift algorithm [1]. A connected components algorithm
is then applied to a sub-sampled image to obtain a list of skin-coloured pixel clusters in
the image. Tracking hands is subsequently performed at a skin cluster level, and is treated
as a temporal association problem. The task requires resolution of the following two
questions: (1) which of the skin coloured clusters correspond to hands? and (2) which of
the clusters corresponds to the left and right hand respectively?

We simplify the first question by assuming that only the two largest skin clusters other
than the head can potentially be hands. Note that one body part can only correspond to
one cluster, but a cluster may correspond to one, two or three of the body parts. By
considering components from the whole image, tracking is performed in absolute terms
so that a hand cannot be ruled out of consideration even under considerable discontinuous
motion. A conventional tracker that models the dynamics of the hands would be unable
to distinguish between the two hands in general, especially if the assumption of spatio-
temporal continuity were frequently violated. We suggest, rather, that the cluster identities
of the hands can often be inferred through a process of deduction. Given uncertain and
incomplete information, this deduction should be probabilistic rather than rule-based. In
the next section, Bayesian Networks are introduced as a framework for representing and
using domain knowledge to perform probabilistic inference.

3 Bayesian Networks

A Bayesian Network(BN) is a graphical representation of a probability distribution of a
set of random variables. Given a set ofN variablesX = X1; : : : ; XN , the joint probability
distributionP (X) can be factored in any number of ways using Bayes’ rule. A minimal
factorisation exploits independencies between variables to exhaustively specify the joint
distribution via a sparse set of conditional probabilities. A BN is a directed acyclic graph
in which each variableXi is represented by one node, and directed edges between nodes
represent conditional dependencies. Since a dependence is not unique, the connotation
of a causal relationship is often attached to each edge, such as “X is the cause ofY ”,
the direction of the edge being associated with the most intuitive relationship between the
variables. A BN represents the factorisation:

P (X) =
NY
i=1

P (Xijpa(i)) (1)

where pa(i) is the set of parent nodes of nodei.
Although algorithms exist for automatically structuring a network from training data,

BNs are usually constructed by hand. For many applications, this should be seen as an






advantage rather than a drawback. Since BNs provide a rich and principled framework for
embedding domain knowledge, a user would often prefer to specify the network structure
and the conditional probabilities associated with the graph edges,P (Xijpa(i)). In the case
that a node has no parents, conditional probabilities degenerate to priors. The conditional
probabilities may be learned from a training set of data, either through statistical sampling
in the case of complete data, or using the Expectation-Maximisation algorithm when some
variables are unobservable [3].

Given the network structure and parameters, a BN can be used for a variety of tasks,
including inference, prediction and marginalisation. To perform inference, the user ob-
serves a subsete of theN variables, referred to asevidence. After incorporating this
evidence into the network, the distribution represented isP (Xje), that is the distribution
of all variables given the available evidence. Note that not all variables need to be ob-
served for inference to take place. Given the distributionP (Xje), marginalisation yields
the distribution of each variable given the evidence,P (Xije). More practically, one can
obtain the most likely joint configuration of the variables given the evidence:

x� =
argmax

x P (xje) (2)

One may wonder how inference across a joint distribution can be tractable for a large
number of variables. The answer is in the network structure, which encodes independen-
cies between variables. By exploiting this structure, an accurate and globally consistent
representation ofP (X) can be obtained through localised computation and message pass-
ing [6].

In the case that the network is a poly-tree, inference can be performed using a rela-
tively simple message-passing algorithm [6]. If the network contains undirected cycles,
this inference algorithm becomes intractable because the messages can cycle forever. The
network must first undergo a series of transformations to obtain ajoin treein which infer-
ence can be performed using message passing [2]. First the graph is moralised by adding
an edge between all pairs of parents where none already exists, and then making all edges
undirected. The moralised graph is then triangulated by adding fill-in edges until no cy-
cles with more than four edges exist. Maximum cardinality search is then used to turn the
triangulated graph into fully-connected groups of nodes calledcliques. The triangulation
of the moralised graph is not unique in general, and finding the triangulation with the
smallest cliques isNP -hard. However, the graph transformation process only needs to be
performed once off-line. In practice, heuristic greedy algorithms create satisfactorily eco-
nomical triangulations [2]. Each clique of the triangulated graph corresponds to a node of
the join tree, and each edge in the join tree contains aseparatorset of variables:

S = Ci \ Cj (3)

whereCi andCj are adjacent cliques in the join tree. To perform inference, apoten-
tial function is maintained for each clique,f�C ; C 2 Cg, and separatorf�S ; S 2 Sg.
These potentials are maintained through a series of marginalisation operations to jointly
represent the global distribution:

P (x) =

Q
C2C �C(xC)Q
S2S �S(xS)

(4)

After initialisation or entry of observed evidence, a two-pass flow propagation algorithm
ensures a valid representation ofP (X) over the potentials. The space and computational
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Figure 1: The Bayesian Network for tracking interacting hands. Each node is labelled
with an indexi and represents a discrete random variableXi. Text labels briefly describe
the variables. Symbols are: LH (left hand), RH (right hand), H (head),C1 (skin cluster
1),C2 (skin cluster 2), LS (left shoulder), RS (right shoulder), rel (“relative to”).

requirements of the method are proportional to the state space sizes of these cliques.
After flow propagation, marginalisation within cliques can be performed to yieldP (Xi)
for each variable, or a maximisation variation of the propagation algorithm can be used to
obtain the most likely configuration. A particular instance of a BN is now described for
inferring the head and interacting hand positions of a person.

4 A Network for Tracking Interacting Body Parts

A Bayesian network used for inferring the positions of a subject’s hands given the head
position is shown in Figure 1. The network consists of 29 discrete variables, all of which
are observations except for the abstract quantitiesX0, X1, X5 andX8. The total state
space size of the set of variablesX = fX0; : : : ; X28g is 9:521245� 1012, which is the
number of probabilities required to explicitly representP (X). However, to populate the
conditional and prior probability tables of the network required specification of only 456
probabilities, yet any query on the full joint distribution can still be made.






At each frame, the two largest skin clusters that are not the head cluster are identified
asC1 andC2. The variables to be inferred areX0 andX1, which can take on values
C1 (skin cluster 1),C2 (skin cluster 2), andHead. All other variables exceptX5 and
X8 are observations made at each frame by discretising continuous values. Note that it
is a characteristic of Bayesian networks that inference can still be performed when data
are missing. Therefore if there are less than two non-head skin clusters, the variables
associated with the unobserved clustersCi are left uninstantiated and “Ci is a hand” is
instantiated to “false”. In this way, the dynamically-variable number of skin clusters can
be handled without modifying the network structure.

All of the conditional probabilities were specified by hand using common-sense con-
straints. It is through these probabilities that high-level constraints can be combined in a
single framework. For example, the conditional probability table forX6 (head motion)
was used to encode constraints concerning motion, such as:

1. If the head was previously unoccluded by the hands, but now is, then motion must
be present in the head region.

2. If at least one hand occluded the head previously and now neither hand occludes
the head, then motion must be present in the head region.

3. If the head was previously unoccluded and still is unoccluded, there may still be
head motion due to the subject moving his/her head.

4. If only the left hand occluded the head previously, but now only the right hand
occludes the head, there must be motion in the head region.

The conditional probabilities are also used to encode boolean rules. For example, the
relationship betweenX5, “C1 is a hand”, and its parentsX0 andX1 is:

P (X5jX0; X1) =

�
1 if X0 = C1 orX1 = C1;

0 otherwise
(5)

Other constraints exploited are the size (X12, X15, X16, X19), shape (X13, X17) and
motion (X14, X18) of the clusters to determine whether they are hands, the distances of
the clusters from the shoulders (X20,X21,X22,X23) and the previous left- and right-hand
positions (X2, X3, X10, X11) to determine hand-to-cluster correspondence, the change
in head cluster size (X7) and distance from the head to previous left- and right-hand
positions (X26, X27) to determine whether head occlusion has occurred, the appearance-
based cluster orientation (X4, X9) to determine correct left-right hand associations, and
the number of cluster skin pixels relative to the average (X24, X25) to indicate hand
occlusion. During inference, we use a maximisation variation of the sum-flow algorithm
to establish the most likely configuration ofX0 andX1 [2].

At the current stage of our work, the BN is a static network in that it performs infer-
ence at one time instant only. Nevertheless, the network is coupled indirectly over time
through the specification of prior probabilities forX0 andX1, the previously-inferred
head occlusion stateX28, and the distances of the current clusters from the previous hand
positionsX2,X3,X10,X11,X26 andX27. Hence tracking is loosely but not solely reliant
upon spatio-temporal continuity.






5 Characteristics of Inference-Based Tracking

To highlight the strengths of an inference-based approach to tracking under ambiguity,
occlusion and discontinuous motion, we compared our method with a CONDENSATION-
based approach that also incorporates an observational exclusion principle, similar to the
approach taken in [5]. We refer to the CONDENSATION-based model as thetemporal
exclusion(TE) tracker. The TE tracker state consists of the position and size of a left-hand
box and a right-hand box, and a discrete state specifying whether the left hand is on top
(closer to the camera than the right hand), or vice versa. It is assumed that both hands
are always closer to the camera than the head. As in our approach, the head is tracked
using an independent mean-shift tracker. The observation likelihood functionp(ztjxit)
combines skin colour, motion and orientation cues to validate the location and identity of
the hands:

p(ztjxit) = (1 + po(ztjxit)):
�
pt(ztjxit) + pb(ztjxit)

�
(6)

wherept(:) andpb(:) are the contributions for the top and bottom hands according to the
state hand order, andpo(:) comes from the hand orientation likelihood. The exclusion
principle is enforced through the hand likelihood contributions, which take the form of
sums over pixelsv in the respective hand boxesrt andrb:

pt(ztjxit) =
X
v2rt

8>><
>>:

1 if v 62 rh is skin but not moving,
2 if v 62 rh is skin and moving,
0:001 if v 2 rh
0 otherwise

(7)

whererh is the head region box, and

pb(ztjxit) =
X
v2rb

8>><
>>:

1 if v 62 rh [ rt is skin but not moving,
2 if v 62 rh [ rt is skin and moving,
0:001 if v 2 rh [ rt
0 otherwise

(8)

Thus each skin or skin-and-motion pixel observation can contribute to one body part only,
with the top hand having precedence over the bottom hand. The small contributory factor
for pixels falling in the head box ensures that a hand occluding the head is considered
as a possibility. Note that under this implementation, the semantics of occlusion are not
modelled explicitly but rather in anad hocmanner. The hand orientation likelihood for
the top hand is taken from the hand orientation histogram at the top hand position. The
bottom hand orientation is not used if it is occluded, since it would probably not be visible
in the image. If it is used, thenpo(:) becomes the average of the two likelihoods.

The state propagation densityp(xitjx
i
t�1) is a mixture of three functions. The first10%

of state samples are randomly initialised, the next40% are propagated by random pertur-
bation, and the remainder are propagated according to a simplistic constant-velocity dy-
namical model by adding the previous spatial hand displacement toxit�1 and then adding
a random perturbation. The hand precedence state is modified as in [5].

The TE tracker makes an interesting comparison with our BN method because there
are several differences in the fundamental approach:

Local vs. global tracking: the CONDENSATION algorithm is generally a localised
method in that it is based on state change and dynamical models. Therefore the






method is sensitive to initialisation and can permanently lose track of an object if
it does not obey the model dynamics. The BN method is global in that it uses skin
clusters from the whole image.Temporal continuity information is used but not
relied upon.Recovery from loss of track is possible at each time frame, therefore
the initialisation procedure is not important.

Sparse vs. full density: the CONDENSATION algorithm represents the state density
with a sparse sample of particles, while the BN method fully models the state space
with an economical number of parameters. Therefore CONDENSATION may miss
certain hypotheses if the state space is not adequately sampled.

Repeated vs. unique observation:the Bayesian network requires the observations to be
used once only to simultaneously consider all possible hypotheses. In comparison,
the CONDENSATION algorithm must re-use the observations for each state sample
in a hypothesise-and-test fashion which is computationally expensive, and can be
wasteful since multiple state samples may be very similar.

Both tracking methods were applied to five sequences consisting of approximately 200
frames each, and involving two different people. The CONDENSATION-based tracker
used 2000 state samples, and was initialised by heuristically assuming the hands to be
initially found separately in the subject’s lap. To illustrate the properties of the two track-
ers, sample frames from five different occlusion scenarios are shown in Figures 2 and 3.
The top row of images in each figure comes from the Bayesian Network tracker, and the
bottom row from the TE tracker. In all figures there are three boxes: one for the head, one
for the left hand (marked with “**”), and one for the right hand.

In Figure 2(a), the hands occlude each other and then separate. This is to test whether
the tracker can obtain the correct hand assignment after occlusion. The BN is able to
track both hands during occlusion. Afterwards the tracker assigns the hand positions
incorrectly, but after several frames correct assignment is recovered due to the hand ori-
entations. The TE tracker, however, begins and ends with incorrect hand assignment. In
Figure 2(b), the right hand first occludes the face, then both hands occlude the face si-
multaneously. The BN method tracks the hands correctly both during and after occlusion.
The TE tracker is unable to detect the head occlusion, and eventually the right hand box
locks onto background noise. After occlusion, the TE tracker regains lock.

Figure 3 contains some more challenging examples. In Figure 3(a), the right hand
disappears from view entirely and then reappears. Although disappearance of body parts
is not modelled explicitly, both trackers are able to recover. During occlusion, the BN
tracker assumes that head occlusion has occurred, while the TE tracker catches uncovered
pixels at the edge of the visible hand box. Again, the TE tracker maintainsincorrecthand
assignments from the start. In Figure 3(b), the hands occlude and then cross over, with
the right hand partially occluding the head afterwards. The BN tracker not only tracks
both hands but assigns the hands correctly throughout. The TE tracker copes during
occlusion but when the hands cross over, both boxes are assigned incorrectly to the left
hand blob. In Figure 3(c), the first two displayed images are consecutive frames labelled
t andt+ 1. There is considerable discontinuity in motion between the two frames due to
disk swapping during video capture. At timet, the BN tracker is tracking correctly during
head occlusion by the right hand. Att + 1, the hands are found but assigned incorrectly.
However, within three frames the tracker has recovered to correctly assign the hands. In
contrast, the TE tracker has incorrectly assigned the hands and is unable to track during






framet, instead latching onto some noise. At timet + 1, the left hand is found correctly
but the right hand is distracted by noise, possibly due to inadequate sampling of the joint
state space. After three frames the hands are both found, but incorrectly assigned.

The examples show that the Bayesian network copes well with a variety of complex
situations, while the localised sampling method suffers from problems due to inadequate
sampling, susceptibility to distractions and lack of high-level constraints. Regarding com-
putational requirements, the BN method required� 1:6 seconds per frame and the TE
method required� 24:1 seconds per frame on a PII-330 MHz. The enormous increase in
computational expense for the TE method was mainly due to the re-use of observations in
statistical sampling, in particular the local hand orientations which require an expensive

(a) Hands occlude each other, then return.

(b) First one hand, then both hands occlude head.

Figure 2: Examples of head and hand tracking results. In each example, the top row is
the Bayesian network tracker output, and the bottom row is the CONDENSATION-based
tracker output. The left hand box is marked with “**”.






(a) The right hand disappears from view.

(b) Hands occlude, then cross over.

(c) Strongly discontinuous motion between two consecutive frames,t andt+ 1.

Figure 3: More examples of head and hand tracking results. In each example, the top row
is the Bayesian network tracker output, and the bottom row is the CONDENSATION-
based tracker output. The left hand box is marked with “**”.






filtering operation. This highlights the important computational advantage of the BN ap-
proach: an enormous state space can be fully modelled using efficient computation, while
the resources required for particle filtering methods such as CONDENSATION grow ex-
ponentially with the state space size and are largely out of the designer’s control.

6 Conclusion

A probabilistic reasoning approach to tracking multiple interacting body parts under oc-
clusion and ambiguity using a Bayesian Network has been presented. Bayesian Net-
works provide a flexible, rigorous and comprehensive framework for incorporating do-
main knowledge and representing high-level semantics such as occlusion. The tracker
considers the whole high-dimensional state space to infer object positions but remains
computationally inexpensive, while contemporary methods such as CONDENSATION
maintain only a sparse sampling and are commonly expensive to compute. There are sev-
eral opportunities for extending this work. Firstly, the network probabilities were created
by hand. The current network could be used to obtain a training sample of variable values,
which could then be employed to re-estimate the network parameters. Secondly, the cur-
rent network is primarily static in that temporal correlations between variables are largely
ignored. The network could be made truly dynamic by adding extra time slices. However,
this requires a non-trivial re-structuring of the network at run-time [4]. Investigation is
required as to whether the benefits outweigh the extra computational expense.
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