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Abstract

This paper addresses the problem of reconstructing surface models of in-
door scenes from sparse 3D scene structure captured from N camera views.
Sparse 3D measurements of real scenes are readily estimated from image
sequences using structure-from-motion techniques. Currently there is no
general method for reconstruction of 3D models of arbitrary scenes from
sparse data. We previously introduced an algorithm for recursive integration
of sparse 3D structure to obtain a consistent model. In this paper we fo-
cus on incorporating uncertainty information into model to achieve reliable
reconstruction of real-scenes in the presence of noise. A statistical geomet-
ric framework is described that provides a unified approach to probabilistic
scene reconstruction from sparse or even dense 3D scene structure.

1 Introduction

An important problem in computer vision is the reconstruction of 3D models of complex
rigid scenes from monocular image sequences. Previous research aimed at constructing
3D models has addressed the problem of reconstruction from dense 3D surface measure-
ments captured using active range sensors [1, 12, 2] or multi-baseline stereo [4]. Volu-
metric techniques have been widely used to achieve reliable reconstruction of complex
objects [1] and environments [2, 11]. Methods for reconstruction from dense data assume
that the distance between adjacent surface measurements can be used to estimate the local
topology of the 3D surface. This assumption is not valid for interpolation of sparse 3D
data.

Model reconstruction from sparse 3D data of arbitrary geometry scenes is an open
problem. Faugeras et al.[3] addressed this problem using 3D Delaunay triangulation
(tetrahedralisation) of a set of image features together with their visibility for each camera
view to construct a volumetric model. The principal limitation of this approach is the as-
sumption that the entire feature is visible which prohibits partial occlusion. Furthermore,
this is a batch method which requires all the 3D structure prior to reconstruction.

Recently Kutulakos and Seitz [5] presented a general theory of N-view shape recov-
ery. The principal assumption of their approach is that a locally computable consistency
criteria is available to test point correspondence in multiple views. In image sequences
of real-scenes such as indoor environments lack of surface texture will result in a recon-
struction which deviates considerably from the real surface .

In this paper we address the problem of reconstructing surface models from sparse
3D scene structure captured from N camera views. In particular we focus on incorporat-
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ing uncertainty into the reconstruction. A geometric theory that provably converges to
a correct reconstruction of the real surfaces in the 3D scene as the number of processed
views increases has recently been presented [6]. In this paper we extend this approach by
introducing an algorithm that explicitly considers the errors inherent to a real vision sys-
tem. The algorithm presented provides a unified approach to scene reconstruction from
any available sparse or even dense 3D scene structure.

2 Real Scene Reconstruction

The goal of our work is to develop an automatic system for scene reconstruction from
image sequences. In this section we present the algorithm developed for scene recon-
struction from a sequence of images.

Images are captured using a camera mounted on an autonomous mobile robot plat-
form. This system captures a sequence of images of an indoor scene with approximately
known camera positions. A recursive structure-from-motion (SFM) algorithm [9] is ap-
plied to estimate the 3D location and uncertainty for the sparse scene features together
with the camera position and orientation. A sparse feature based SFM algorithm has been
used for computational efficiency of reconstruction for long image sequences. Point and
line features are used in this work although the approach also extends to higher order fea-
tures. The SFM algorithm incorporates constraints between features such as coplanarity
and surface perpendicularity to increase reconstruction accuracy if information on feature
groupings is available. Further details of this system are provide in [10].

2.1 Algorithm Overview

From each frame that SFM processes, a set of sparse 3D featuresF = ffig
Nf

i=0 is com-
puted. Each of these featuresfi which is visible in thejth view taken at position~vj
defines a visibility constraintcij as follows:

Definition 1 (Visibility Constraint :) The space between the view position~vj and
the scene featurefi is not occupied by an (opaque) object.

The real 3D scene viewed in framej can be approximated by a set of planar triangular
surface primitivesM = ftig

Nts

i=1 which span the space between the features. We can then
define a consistent model as a set of triangles such that none of its triangles intersect any
of the visibility constraints inC = fcig

Nc

i=0. For a single view a consistent model can
be constructed by a constrained triangulation in a plane orthogonal to the view direction
as the order of feature projections in the plane is preserved with respect to their relative
ordering in 3D space.

In general however, for multiple views of a 3D scene there is no single 2D plane to
which the scene features can be injectively projected without reordering of the features
F . The algorithm developed is thus based on recursive integration of the set of feature
dataFi, and feature visibility constraintsCi, for each new camera view. The algorithm
can be summarised by the following steps:

1. Build an initial modelM0 by using constraint triangulation on the set of features
F0 reconstructed from the first view.

2. For each new viewi; i > 0






(a) Update the 3D position of features inMi�1 for which a new measurement has
been computed resulting inM 0

i .

(b) Build a consistent model for theith viewM 00
i , by constrained triangulation of

the visible featuresFi, in a plane orthogonal to the view direction.

(c) Integrate non-redundant triangles fromM 00
i intoM 0

i yielding toMi.

(d) Eliminate triangles inMi that violate the viewpoints visibility constraintsCi

For a closed scene with a finite set of features we have shown [6] that this algorithm
will converge to a reconstruction of the real scene surfaces as the number of views in-
creases. An underlying assumption in this algorithm however is that no significant noise
should exist in the 3D data. However, in our system noise may be caused by several
sources, including camera calibration, robot odometry, feature extraction, matching and
3D reconstruction. It is thus essential to use estimates of the uncertainty for our 3D mea-
surements in order to produce a reliable system.

3 Reconstruction with Uncertainty

This section presents a probabilistic framework that utilises uncertainty on our geometric
features to make our system more robust. In particular we focus on the update (2a) and
visibility (2d) processes of our algorithm, as described in the previous section, that appear
as the most sensitive to noisy measurements.

First we describe the underlying geometric probability assumptions and we give an
uncertainty representation for both 3D points and lines. Based on this foundation we
subsequently extend the update and the visibility processes to explicitly consider noise in
the measurement estimates.

3.1 Geometric Uncertainty

An estimated geometric object can be considered as a random variable described by a
vectorp which consists of the variables that we have chosen to parameterise it. Thus
we can define its probability density function (pdf) f(p) as the probability of the specific
objectp in the corresponding parameter space. In this sense geometric uncertainty can be
treated using classic probability theory.

In practice we do not have an explicit pdf because we are not able to model all the
sources of errors. However, a reasonable assumption is that the pdf is Gaussian. This
assumption can be justified if noise is caused by a large number of independent sources
from the central limit theory. There is also a practical justification for choosing the Gaus-
sian distribution such that it can be fully specified by the first and second order statistics
which are the only information that we want to propagate through the system.

This characteristic is very useful because the transformation of a pdf reduces to that of
transforming its mean and covariance as any linear transformation of a Gaussian random
vector is Gaussian as well [14]. In particular, ifp is a Gaussian random vector with mean
p and covariance matrixPp and assume a transformationx=Ap+b of p thenx will be a
Gaussian vector with

x = Ap+ b

Px = APpA
T

(1)






A property of geometric uncertainty is that a physical representation can be given
to random variables. For a 3D point its covariance can be visually described with an
ellipsoid. Assume a pointx with covariance matrixPx and meanx. Then it can be
shown [15] that(x� x)TP�1

x (x � x) = k2 is an ellipsoid centred atx that bounds the
volume inside which we expectx to lie with a probability specified by k.

In our system a 3D line is defined by its endpointsx1, x2 combined to a vector
x = (x1x2)

T. However we are using a minimal representation with 4 degrees of freedom
[8]. This results in a 3x3 covariance matrix (for each point) with the null space along the
line direction. The uncertainty over each endpoint can be represented with a 2D ellipse in
the plane perpendicular to the line orientation.

Having this representation we want to get an estimate of uncertainty for each pointp
along the line segmentx. To achieve this we can use a linear interpolation scheme. We
can then representp as

p = x1 + �(x2 � x1) (2)

If we think of equation (2) as a linear transformation ofx in the formp = A(x) where

A =

2
41� � 0 0 � 0 0

0 1� � 0 0 � 0
0 0 1� � 0 0 �

3
5 = ((1� �)I j �I) (3)

then according to (1) the mean and covariance(x;Pp) will be

Pp =
�
(1� �)I �I

� �P1 0
0 P2

��
(1� �)I

�I

�
= (1� �)2P1 + �2P2

x = (1� �)x1 + �x2

(4)

whereP1 andP2 are the covariance matrices ofx1;x2 respectively.
Equation (4) is quadratic relative to� which means that the uncertainty envelope

around a 3D line can be visualised as an elliptic hyperboloid.

3.2 Model update based on uncertainty

The sources of error throughout the image capture and the SFM result in noisy input 3D
data to our modelling system. Our reconstruction process is recursive and for every new
image we update each feature in the existing model based on the new observations. This
section presents how uncertainty can be utilised to make feature update robust to noise.

The initial step of the update process involves identifying outliers. Our approach is
to check that each model’s 3D line lies inside the uncertainty envelope of the new line
estimate. In this way we check that both the distance and the relative orientation of the
two lines are consistent. Another criterion used [15] requires that both 3D segments
share a common part. These tests are sufficient to ensure that no false measurements
are propagating to the feature integration process. Consider the case of Figure 1 where
x = (x1;x2) is the new estimate for the line andp = (p1;p2) is the model line. The
initial steps of the algorithm can then be summarised as

1. Projectpi onto the nearest point on the model line defined byx. (xp = (xp1;xp2))

2. Check that segmentsx;xp share a common part.
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Figure 1: Feature update process.New line measurementx checked for consistency and
combined with corresponding model linep

3. Compute the uncertainty ellipse for eachxpi using equation (4).

4. Test whether or notpi lies inside the ellipse of the correspondingxpi point. (pi
lies on the same plane with the ellipse because��!pixpi � ���!x1; x2 = 0)

Each new consistent line measurement should subsequently be combined with any
existing corresponding line estimate and integrated to the global 3D model. There are
two requirements that this process should meet. First the covariance at the endpoints of
the resulted line should be less than the covariance of the endpoints of the lines from
which it has originated. Second the new line should not be smaller than either of the two
integrated segments.

The approach used is based on the Kalman filter equations and is similar to [13] ap-
plied for merging parallel affine transformations under uncertainty. Considering again the
case of Figure 1 assume thatl is the result of mergingp;x. Also assume thatPl;Pp and
Px are their corresponding covariances andl;p andx their means. Then the Kalman gain
will be K = Px � (Px +Pp)

�1 and the covariance and mean ofl are:

Pl = Px �K �Px

l = x+K � (p� x)
(5)

If x,p are Gaussian distributed with white noise then equation (5) is the maximum
likelihood estimate with variance less than any other linear unbiased estimate [7]. The
integration part of the feature update algorithm is

5. Identify the greatest segment that can be formed fromxi;xpi. (k = (x1;xp2)).

6. Shift each of the two intermediate points (xp1;x2) along their corresponding line
until they coincide with the endpoints ofk (p1 ! px1;x2 ! xp2).

7. Extrapolate the covariances forpx1;xp2 using equation (4).

8. Combine segments (px1;p2) and (x1;xp2) using equation (5).






3.3 Visibility test with uncertainty

The visibility of features from our current camera position relative to the reconstructed
model is a powerful tool for testing the consistency of our model. However, noise in
the data can result in rejection of hypothesised triangles which actually correspond to
real scene surfaces. This makes the original algorithm ’brittle’ in the presence of noisy
measurements. Thus visibility should be applied with caution and consideration to the
uncertainty of both the model’s triangles and features.

Our reconstruction scheme described in section (2.1) is based on the assumption that
for each framei the resultant modelMi is consistent. Each featurefi in framei defines
a visibility constraint which should be tested againstMi. To account for the uncertainty
in the measurement data we give a new definition for the visibility check that eliminates
triangles which we are ‘confident’ that violate the test not due to noise.

Definition 2 (Visibility constraint with uncertainty) : The space between the cam-
era position and the volumetric uncertainty envelope of the feature should not intersect
with any of the model’s triangles uncertainty volumes.

In this section we present the process of applying visibility for a 3D point against
the reconstructed model. Visibility for lines is a direct extension for each of their two
endpoints. The first step is to test for 2D overlaps between the feature and the model’s
triangles in the image plane. Any identified triangles should then be checked for visibility.
Consider the case of Figure 2(a) where pointpi lies inside triangleti in the image plane
while p; t are their 3D estimates respectively. For the case of line visibility we perform
the same 2D test for both of its endpoints and to each identified triangle we associate two
entries which corresponds to either the intersection point of the 2D line with one of the
triangle’s edges or the line’s endpoint which is bounded by the triangle.
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Figure 2: One dimensional visibility test. (a)Model’s triangles and features are tested
for 2D overlap in the image plane. (b)Representation of 1D variance ofp;pt along the
projection optical ray.

Implementation of the visibility checks according to Definition 2 involves intersec-
tions between higher order surfaces in 3D for which it is also very difficult to compute an
explicit equation. Therefore, we approximate this test by reducing the search space to 1D
by ’projecting’ the uncertainty on the 3D line from the camera to the feature. Consider the
3D line r originating at the camera centrec and passing throughpi. If we backprojectr
against the plane formed by the 3D trianglet we get pointpt. Collinear to this 3D line is
also the 3D pointp (Figure 2(b)). Ifpv = (pv1;pv2) is the segment onr which depicts
the variance ofp along this line and respectivelytv = (tv1; tv2) the segment forpt then






Definition 3 (One dimensional visibility test with uncertainty) : The line segment
between the camera positionc and the furthest estimate for the position where the feature
lies tv2 should not overlap with any segment projection of a model triangle’s variance
onto the optical ray line.

The problem thus reduces to the computation of the 1D variances for bothp andpt.
However, while the distribution (p;Pp) for p is knownpt can be any point inside triangle
t. In the following section we describe a representation for triangle uncertainty and how
to interpolate the distribution of any point inside it from the distributions of its vertices. A
method for computing the mean and variance along a specific 1D (line) direction in space
is subsequently presented.

3.3.1 Triangle Uncertainty Representation

A triangle can be fully described by its vertices. Using barycentric coordinates we can
interpolate any point that lies inside the triangle. Assume trianglet = (x1;x2;x3) and a
pointpt on the triangle. We can then expresspt in barycentric coordinates as

pt = ux1 + vx2 + (1� u� v)x3 (6)

whereu;v 2 [0;1]. If we treat each of the triangle’s vertices as 3D points with known
mean and covariance then following the same reasoning we used in section (3.1) for lines
we can express the mean and covariance (pt;Ppt) of every point on this triangle relative
to the mean and covariances of its vertices (xi;Pxi) as:

pt = ux1 + vx2 + (1� u� v)x3
Ppt = u2Px1 + v2Px2 + (1� u� v)2Px3

(7)

3.3.2 From 3D to 1D distribution in space

This section addresses the problem of computing the mean and variance of a point along
a 3D line direction if its 3D distribution is known. We consider the example of Figure
(2(b)) and focus on computing the segmentpv = (pv1;pv2) which indicates with some
specified confidence how pointp can move along the rayr. In reality the 3D pointp does
not lie exactly on the examined 3D rayr because it is our estimate of the the true position
in the scene. Instead we have an ellipsoid which indicates where the actual point lies in
3D space with some probability. Consider this ellipsoid as a cloud of possible positions
for the scene feature and project each of these point ontor . Every pointm on the line
can be expressed asm = c+ �v wherev is the unit vector alongr.

We can estimate the segmentpv by examination of the distribution of� for the set of
projected points. It can be shown that for each pointx projected,� will be

� =
v � (c � x)

kvk2
(8)

If we consider equation (8) as a linear transformation ofx to� then based on equation
(1) the mean� and the covarianceP� of � will be

� = v�c�v�x
kvk2

P� = (�v=kvk2)TPx(�v=kvk
2)

(9)






wherex = p the mean of distribution of points in the ellipsoid andPx = Pp the covari-
ance. Using equation (9) we consider the pointm = c+ �v as the mean point of the
segmentpv andpv1;pv2 are defined left and right ofm in distanceP�.

For the 3D pointpt on the triangle we use equation (6) to compute the values ofu; v.
Its 3D distribution can then be computed using equation (7). Using the same reasoning
with p we compute the 1D variation segmenttv = (tv1; tv2) along the optical ray.

Having computing bothpv; tv we then apply visibility according to definition 3.

4 Results

This section presents results of applying the recursive reconstruction algorithm to sparse
3D structure from both real and synthetic image sequences. The sequences are from
simple 3D scenes which contain multiple objects such that the entire scene is not visible
from a single viewpoint.

Results for a synthetic image sequence of 25 images are shown in Figure 3. The
sequence is of two cubes, one in front of the other and three perpendicular planes behind.
In the initial frame the smaller cube is completely occluded but as the camera moves from
left to right becomes visible. Our reconstructed model (Figure 3(b)) approximates the real
scene surfaces closely. However, several peaks are formed from the triangular sets that
correspond to most of the real planes.

Our probabilistic integration, weights each estimate according to its uncertainty so
that the influence of a single measurement does not significantly affect the model. Figure
3(c) presents the model reconstructed with the proposed update process. To measure the
improvement over the reconstruction we fitted a plane to each set of model vertices that
belong to the same plane in the real scene and compute the mean and the variance of
distances. A comparison of the plane measurements for the new scheme over the equal
weight update one is presented in Figure (5a).

Results for a real-image sequence of 10 frames are shown in Figure 4. The scene is of
the corner of a room with several occluding objects. The reconstructed models (Figures
4(b), 4(c)) clearly approximate the real scene. Figure (5b) again illustrates the mean
and variance of distance of points from their corresponding planes. Although there is an
improvement in reconstruction of most planes further evaluation of the possible sources
of errors should be made for real scenes.

5 Conclusions

This paper presents a geometric statistical framework for using uncertainty in a 3D indoor
environment reconstruction system. In particular we described the formulation for prop-
agating uncertainty through our recursive algorithm for scene reconstruction from sparse
data. Results from both real and synthetic sequences demonstrated the importance of ex-
plicit uncertainty consideration. The use of uncertainty enables: a)incremental update of
the model based on the statistical distribution of features and b)the robust visibility con-
straint tests to eliminate inconsistent triangles. Further work is required to fully evaluate
the reconstruction accuracy and robustness in the presence of measurement uncertainty
and feature mismatches in real environment sequences.






Figure 3: (a)[Top] Synthetic box sequence. (b)[Bottom-Left] Reconstructed model using
equal weighs in feature update. (c)[Bottom-right] Model using the statistical weights
update.

Figure 4: (a)[Top] Real sequence from a room corner. (b)[Bottom-Left] Textured recon-
structed model. (c)[Bottom-right] Wireframe superimposed on the model.






Figure 5: Comparison of mean and variance of points from their corresponding
planes.(a)Synthetic Sequence. (b)Real lab sequence
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