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Abstract

We present a new method of fractal-based texture analysis, using themulti-
scale fractional Brownian motiontexture model, and a new parameter,in-
termittency. The intermittency parameterp describes a degree of presence
of the textural information: a low value ofp implies a very lacunar texture.
The multi-scale fractional Brownian motion model allows to construct multi-
regime textures in the frequency domain. Adding intermittency to this model,
we compose theintermittent multi-scale fractional Brownian motion model:
the Hurst and intermittency parameters of such processes are functionsH(l)
andp(l) depending on a scalel. The texture is thereby seen as thefusion
of structures and details. The structure of the texture is analyzed with the
large values ofl, corresponding to the low frequency content of the texture.
The details of the texture are analyzed with the small values ofl, related to
the high frequency content of the texture. The texture is then characterized
by all the estimated values ofH(l) andp(l), for all the scalesl of analysis.
The method allows a multi-frequency analysis, permitting thechoice of sig-
nificant scalesin a classification task. An application to the classification of
corn silage texture images, for which the low frequency content is determin-
ing, is proposed.
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1 Introduction

In texture analysis using a fractal approach, the fractional Brownian motion (fBm) model
[12] is one of the most commonly used: the texture is viewed as the realization of a

BMVC 2000 doi:10.5244/C.14.20






random process. To characterize the texture, the fractal dimension of the underlying frac-
tional Brownian motion’s graph has to be estimated. This approach is successful, but
suffers from several limitations: from a practical point of view, the fractal dimension esti-
mation methods are very versatile; from a more conceptual point of view, the textures are
not always perfectly fractal.

In this paper, we use a generalization of the fractional Brownian motion calledmulti-
scale fractional Brownian motion[3] (msfBm) and a new fractal parameter calledinter-
mittency[1]. The msfBm model takes into account multi-frequency fractal regimes, and
the intermittency parameter gives information on the homogeneity of the texture. Com-
bining these two contributions, theintermittent multi-scale fractional Brownian motion
(imsfBm) model of texture can be used.

To test the validity of this approach, we worked with natural corn silage texture im-
ages. The aim is to classify eight different silage types. The algorithm firstly “learns” the
different types, and then automatically classifies incoming images, through a minimum at
the center of gravity of the class.

In the first part of this paper, we introduce our new approach, describing the intermit-
tency parameter, the multi-scale fractional Brownian motion, and a multi-scale estimation
of the imsfBm parameters. The benefits of this approach are set out. In the second part,
we apply this new method to a real texture classification task: the classification of corn
silage texture images. In the last part, we conclude and suggest possible perspectives for
improving this promising technique.

2 The IMSFBM Texture Model

Limitations of the Fractional Brownian Motion Model. This texture model is depen-
dent on the Hurst parameter, taking values between zero and one and linearly related to
the fractal dimension of the graph of the fractional Brownian motion (fBm). A texture,
seen as the realization of a fBm, is characterized through the estimation of the value of
this parameter, and knowledge of the Hurst parameter value affords almost complete in-
formation about the process. Therefore, all the fBm-based studies focus on an estimation
of the Hurst parameter and several estimators were set up to this end [5].

Introduced in [2], the estimator of the Hurst parameter of fBm processes we use, is
presented in equation 1. LetN be the number of pixels in the analyzed texture image,l
the scale step, andV r

N;l the2r-variations ofX given byV r
N;l =

P
k[X(k+l

N
)�X( k

N
)]2r,

we can write the estimator of the Hurst parameter:

eH = �
1

2 logN
log

V 1
N;l

V 2
N;l

; (1)

The slope of the estimation curve( 12 log
V 1

N;l

V 2

N;l

; log l
N
) gives the estimated value ofH .

This slope is computed by a linear regression for few small scales.
The fBm, and its characterization by estimation of its Hurst parameter value, is largely

used in texture analysis, e.g., [8, 14, 10, 11, 13, 4]. However, the fBm is anhomogeneous
process(the process is statistically the same on the whole space), andits high and low fre-
quency contents are equivalent(the process is the same whatever the scale of observance).
Hence, the fBm is not a very flexible model of texture.






In addition, for all these studies, the estimation ofH encounters an empirical choice
of scales: the Hurst parameter is generally obtained by linear regression, computing the
slope of the estimation curve according to several scales. Thereby, all authors using this
technique are confronted with the same problem:the estimation curve is not linear.

A slight change in the choice of the scales of estimation dramatically modifies the
results, even on synthetic images. In [9], the problem is recognized, and the author pro-
poses an algorithm, choosing the scales for which the curve is almost right. However
these scales are generally chosen between 1 and a small number (5 for example).

This upper bound depends on the texture, so the texture can be partly characterized by
this rupture. This justifiesenlarging the range of scalesused in our analysis, to take into
accountthe whole estimation curve: in general, the values obtained by a linear regression
have no physical significance, though the curve shapes do.

Intermittency. It is firstly possible to improve the fBm model, introducinginhomo-
geneitythrough a new parameter calledintermittency.

The intermittency parameterp, introduced in [1], represents the probability that, at fre-
quency2j , the texture hasÆj ' [2dp]j “objects” of spatial size2�j . Thereby, a low value
of the intermittency parameter creates lacunar zones in the signal, and this information
along the scales characterizes the texture under study. The estimator of the intermittency
parameterp, introduced in [1], takes into account this information:

log Æn = �
1

n
log

V 2
N;l

(V 1
N;l)

2
; (2)

The exponential of the slope of the estimation curve(log
V 2

N;l

(V 1

N;l
)2
; log l

N
) gives the

estimated value ofp.
The Intermittency and Hurst parameters do not give the same textural information, and

are independant [1, 7]. For a value ofp = 1, however, the signal obtained is a fBm with
Hurst parameterH . Simulations and estimations of intermittent signals are presented in
[1].

Intermittent Multi-scale Fractional Brownian Motion. It is secondly possible to con-
struct processes taking into account changes of regimes along the scales. Multi-scale frac-
tional Brownian motion (msfBm) was introduced in [3] for that purpose. This process is
a generalization of the fBm with the Hurst parameterH value varying with frequency,
becoming a functionH(l), depending on the frequency1

l
, at scalel (hereafter, we use

the termshigh frequenciesfor small scalesl, and low frequenciesfor large scales). In
bio-mechanic analysis for example, situations like this, wherel is a time, are encountered
[6].

Allowing intermittency to the msfBm process, we involve the intermittent multi-scale
fractional Brownian motion (imsfBm) model. Thereby, any imsfBm-based texture can
be seen as the superimposition of a structural organization (at large scales), and textural
information (at small scales), each of these informations possibly being inhomogeneous.

The estimators ofH(l) andp(l) remain the same. The curves are merely extended to
the large scales to collect the two regimes of the process (we then see two slopes [3]).






St1 St2
SO WP SO WP

FCS S1 S3 S5 S7
CCS S2 S4 S6 S8

Table 1: The eight different corn silage types. They are denoted by(Si)i=1:::8. Two
stages of age (stages St1 and St2), two types of chopping (fine corn silage FCS or coarse
CCS), and two types of mixes (only stalk SO and the whole plant WP)

Multi-scale Analysis. The imsfBm model incites us to extend the estimators curves
for wide scales. However, in the case of natural texture images, these curves present, in
general, more than two regimes. In this case, the computed value ofH or p, obtained
by linear regression, has no clear significance. The estimation of the parameters of the
imsfBm then consists in considering all the curve for wide scales (for example 1 to 150
in the case of512� 512 images). The regression is no longer computed. The estimation
resultis the curve.

Using this technique allows judicious choice of the scales of study. Two textures can
be different only at certain scales. The approach we describe here hinges on thischoice
of significant scales.

3 Application: Classification of Corn Silage

3.1 Introduction

The aim of this section is to classify corn silage images. We chose eight silage types, set
out in Table 1, having several characteristics. The silages are designated(Si)i=1:::8: two
stages of age (stages St1 and St2), two types of chopping (fine corn silage FCS or coarse
CCS), and two types of mixes (only stalk SO and the whole plant WP).

30 images of each type of silage were recorded (in the same acquisition conditions)
for the learning process, plus 10 more images for the classification process. The images
used for the classification were not used in the learning process.

3.2 Learning and Classification Procedures

To classify the images, it is first necessary to learn how to characterize each class. In the
old approach (based on the fBm model), the class is characterized by themean values
of H andp (computed by a linear regression on the estimation curves between arbitrary
chosen scales 1 and 5). These values are the centers of gravity of the class. In our new
approach, these centers of gravity are themean estimation curves(see Figure 1) of the
class.

The eight silages types are firstly “learned”, using 30 images of each silage class for
the learning process.

Then, the six different classes of silages (Stages 1 and 2, with or without corn grain
and fine or coarse corn silage) are also “learned”. Each class of this segmentation contains
4 silage types (for example silagesS1, S3, S5 andS7 all belong to the class FCS), i.e., 120
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Figure 1: The learning process in our approach: each imageIi of a classC is analyzed.
The resulting multi-scale estimation curves (forH andp) are used to produce the mean
curves of the class. These curves are the centers of gravity of the class.

images for the learning process. In doing this, we focus on a single criterion by averaging
the others.

Figure 2 shows some of theH andp-curves of the silages. The�H-curve and�p-
curve are also displayed, these curves being the “derivative” curves of the meanH and
p-curves ((�xi)i=1:::n�1 = (xi+1�xi)i=1:::n�1), and giving information on the regimes
(slopes) of the curves.

Simple Classification. The center of gravity of a class is in this case the average com-
puted value ofH or p by a linear regression on the estimation curves between scales 1 to
5. LetI be the image to be classified in one class amongn classes(Ci)i=1:::n. After the
choice of a featuref (H or p), the classification procedure returns the classCj such that:

jf(I)� f(Cj)j = min
i=1:::n

fjf(I)� f(Ci)jg :

Inter-curve Distance based Classification. The center of gravity of a class is in this
case the average estimation curves ofH or p. Let I be the image to be classified in one
class amongn classes(Ci)i=1:::n. After the choice of a distanced and a featuref (H or
p), depending on a scale intervalDS = [Smin; Smax], the classification procedure returns
the classCj such that:

d[fDS
(I); fDS

(Cj)] = min
i=1:::n

fd[fDS
(I); fDS

(Ci)]g :
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Figure 2: The meanH andp-curves (� the standard deviation) of the silages to be com-
pared, and the mean�H and�p-curves. These curves are the “derivative” curves of the
meanH andp-curves ((�xi)i=1:::n�1 = (xi+1 � xi)i=1:::n�1). Continuous and dashed:
St1, SO and FCS. Dotted and dot-dashed: St2, WP and CCS.

Let (xi)i=1:::n and (yi)i=1:::n be two curves ofn points. We define the following
inter-curve distances:

d1(x; y) =

"
1

n

nX
i=1

jxi � yij
2

# 1

2

x 2 Rd ; (3)

d2(x; y) =

"
1

n� 1

nX
i=1

j(xi+1 � xi)� (yi+1 � yi)j
2

# 1

2

x 2 Rd ; (4)

d3(x; y) =

"
1

n� 1

nX
i=1

j(xi+1 � xi)� (yi+1 � yi)j
2 + jxi � yij

2

# 1

2

x 2 Rd ; (5)

The distanced1(x; y) is a simple Euclidean point-to-point distance, butd2(x; y) is
not a distance. It is the distanced1 for the curves�x and�y: d2 takes into account the
slopes of the curves.

The distanced3(x; y) is a “combined” version ofd1 andd2.

3.3 Results

This section reports the results obtained using the old and new methods, trying to discrim-
inate between each characteristic two by two.

Using the old method (based on a single index as a signature) and after an empirical
choice of scales 1 to 5 for the computation of the linear regression giving the estimated






Scales Distance Rec. Diff. Total Total
Min Max used St1 St2 /80 percentage

4 6 d3 33 36 3 69 86.25
4 6 d2 38 17 21 55 68.75
4 6 d1 21 30 9 51 63.75
2 50 d3 26 21 5 47 58.75
1 7 d3 38 6 32 44 55

Table 2: Results of classification St1/St2 with the�H-curve. Are indicated the number
of recognized (“Rec.”) silages, the differencejRecSt1 � RecSt2j to give an idea of the
robustness of the recognition, the total, and the total percentage.

values ofH andp, the results are very poor: all 80 images are classified in only one
class. For example, in the case of the St1/St2 classification, the procedure classifies all
the silages in class St1.

The results obtained using the new method are presented below.

St1/St2. After observation of the estimation curves, we chose the�H-curve as the
center of gravity of the classes between scales 4 to 6, using a distance collecting the curve
slopes (actually, thep-curve does not give good results in this case): in this region, the
two curves (� the standard deviation) do not intersect.

The results obtained are given in Table 2.
The best results are obtained for scales 4 to 6, using distanced3. These scales are

small, and correspond to the high frequency content of the textures. This zone is the only
one concerned by maturity: the age difference only involves a color change, and does not
modify the global aspect of the texture.

It is interesting to note how a slight change in the estimation scales dramatically
changes the result: using the distanced3 between scales 1 to 7, the total percentage falls
from 86.25 (for the scales 4 to 6) to 55 percent.

SO/WP. After observation of the estimation curves, we chose thep-curve as the center
of gravity of the classes between scales 10 and 30, using a distance collecting the Eu-
clidean differences of the curves (theH-curve does not give good results in this case): in
this region, the two curves do not intersect.

The results obtained are given in Table 3.
Between scales 2 to 50, using distanced1, the results are already highly satisfactory

(93.75 percent). If we reduce the study interval between scales 10 to 50, using the same
distanced1, we obtain the same result. This implies the information we attempt is not
located in the high frequency content of the texture: the presence of corn grains (in the
case “WP” whole plant) does not influence the texture in the high frequencies, because
at this observation length and with our camera settings, the grain size generally oscillates
between 10 and 50 pixels (this is confirmed by direct measurements).

Between scales 3 and 10, the recognition percentage falls to 80 percent: the infor-
mation is not in the high frequencies. This again illustrates the usefulness of a multi-
frequency analysis.






Scales Distance Rec. Diff. Total Total
Min Max used SO WP /80 percentage

10 30 d1 40 36 4 76 95
30 50 d1 40 36 4 76 95
10 50 d1 40 35 5 75 93.75
2 50 d1 40 35 5 75 93.75
3 10 d1 31 33 2 64 80
10 30 d2 36 25 11 61 76.25

Table 3: Results of classification SO/WP with thep-curve.

Scales Distance Rec. Diff. Total Total
Min Max used FCS CCS /80 percentage

3 9 d2 32 36 4 68 85
3 8 d2 30 36 6 66 82.5
4 9 d2 33 32 1 65 81.25
3 9 d1 32 28 4 60 75

Table 4: Results of classification FCS/CCS with thep-curve.

If we reduce the intervals between 10 and 30, and between 30 and 50, we obtain
an interesting result: the classification percentage is equivalent and slightly greater. Al-
though this difference is not significant, this implies these zones are not only carrying
discriminating information, but are also not disturbed by less discriminating zones. The
two intervals[10; 30] and [30; 50] give better results than the “fusion” interval[10; 50]:
we have multi-discriminant zones.

We can also remark the fundamental importance of the use of the correct distance:
between scales 10 and 30 (for which the results are excellent using distanced1), using
distanced2 causes the result to fall from 95 to 76.25 percent.

The classification SO/WP is perhaps the easiest case, but the fractal dimension seems
unable to discriminate between the two classes. The intermittency parameter, used as an
estimation curve, is sometimes more suited than the fractal dimension to analyzing certain
physical phenomena [7].

FCS/CCS. After observation of the estimation curves, we chose the�p-curve as the
center of gravity of the classes between scales 3 and 9, using a distance collecting the
curves slopes (theH-curve does not give good results in this case): in this region, the two
curves do not intersect.

The results obtained are given in Table 4.
The best result is obtained using the curve between scales 3 and 9 and the distance

d2, with 85 percent correct classification. Here again, if we slightly change the estimation
scales (4 to 9 and 3 to 8), the results are modified (82.5 and 81.25 percent).

The choice of the correct distance is again fundamental: between scales 3 and 9, using
distanced1 (this distance does not collect the slopes of the curves), the result falls from
85 to 75 percent.






Old Method Revisited. Given the above results, and if we compute the values ofH
andp by linear regression in the correct ranges of scales, the results are greatly improved:

Between scales 4 and 6, the mean observedH values for silage types “St1” and “St2”
are respectively 0.366 and 0.416. The classification between these scales gives satisfac-
tory results:35 + 31 = 66=80 correctly recognized silages, i.e., 82.5 percent.

Between scales 10 and 30, the mean observedp values for the silage type “SO” and
“WP” are respectively 1.16 and 1.10 (these values have no physical significance, as ex-
plained in section 2). The classification between these scales gives satisfactory results:
31 + 26 = 57=80 correctly recognized silages, i.e., 71.25 percent.

Between scales 3 and 9, the mean observedp values for the silage type “FCS” and
“CCS” are respectively 0.878 and 0.801. The classification between these scales gives
satisfactory results:32 + 31 = 63=80 correctly recognized silages, i.e., 78.5 percent.

4 Conclusion and Perspectives

Textures of the real world are difficult to handle with simple fractal models. An effective
and robust characterization process must rely upon flexible and effective models. The
intermittent multi-scale fractional Brownian motionmodel presented here is a first step
toward a powerful and flexible texture model.

While classical texture analysis often describes the texture too partially and sometimes
inaccurately, the multi-scale estimation of the imsfBm parameters does not limit the result
to a single value: the multi-scale analysis presented in this paper provides a curve, andthis
curve is the multi-scale characterization of the texture. The proposed analysis considers
the structural aspect of the texture, which is implicitly prohibited by traditional fractal
methods of texture analysis.

The experiments carried out on the silage textures images moreover demonstrate the
usefulness of a parameter such asintermittencyin fractal analysis: the intermittency is not
only identifiable, but it also represents a meaningful texture parameter, giving different
information from the fractal dimension.

It will be interesting to compare the results of this preliminary work with other results
of more traditional and not necessarily fractal methods. A multi-scale extension of other
types of analysis can also be considered. The analysis based on cooccurrence matrices for
example, which also depends on an observation scale, might allow a multi-scale extension
of some Haralick parameters.

More technically, the method could take into account certain multi-discriminant zones:
the discriminating information of a texture can be spread across several ranges of scales.
Automatic choice of relevant and discriminating scales could be interesting. Moreover,
the use of data fusion techniques would provide a useful quality factor, while allowing the
processing of several regions of interest and several characteristics.

References

[1] A. Benassi, S. Cohen, S. Deguy, and J. Istas. Self-similarity and in-
termittency. In NSF - CBMS - Research conference on wavelets. Uni-
versity of Central Florida. (in press). Available onhttp://llaic3.u-
clermont1.fr/~deguy/publi/ss_interm/ss_interm.ps.gz .






[2] A. Benassi, S. Cohen, J. Istas, and S. Jaffard. Identification of filtered white noises.
Stochastic Processes and Applications, (75):31–49, 1998.

[3] A. Benassi and S. Deguy. Multi-scale fractional Brownian motion: definition and
identification. Technical Report 83, LLAIC (Laboratoire de Logique, Algorith-
mique et Informatique de Clermont 1), France, Septembre 1999. Available on
http://llaic3.u-clermont1.fr/prepubli/prellaic83.ps.gz .

[4] T. Château, A. Benassi, and P. Bonton. Fractal textures and quality : application to
soil superficial structure estimation. InInternational Conference on Quality Control
by Artificial Vision, QCAV97, pages 319–323, Le Creusot, 1997.

[5] J-F. Coeurjolly. Etude empirique de l’estimation du paramètre de Hurst régissant
le mouvement Brownien fractionnaire. Technical report, IMAG/LMC, Université
Joseph Fourier, Grenoble, 1998.

[6] J.L. Collins and C.J. Deluca. Open loop and closed loop control of posture: a random
walk analysis of center of pressure trajectories.Exp. Brain Res., pages 308–318,
1993.

[7] S. Deguy. L’intermittence comme nouveau paramètre de texture. In C. De-
bain and P. Bonton, editors,Journée Texture en Imagerie Artificielle. CEMA-
GREF, 5 Octobre 1999. (to appear). Available onhttp://llaic3.u-
clermont1.fr/~deguy/publi/jourtex/jourtexture.ps.gz .

[8] M. Dekking, J. Lévy-Véhel, E. Lutton, and C. Tricot, editors.Fractals: theory and
applications in engineering. Springer, 1999.

[9] K. Kpalma. Analyse fractale de textures naturelles dans un contexte multirésolu-
tion : application à la segmentation d’images multirésolution. PhD thesis, Institut
National des Sciences Appliquées de Rennes, Février 1992.

[10] J. Lévy-Véhel. Fractal approaches in signal processing.Fractals, 3(4):755–775,
1989.

[11] T. Lundhal, W. J. Ohley, S. M. Kay, and R. Siffert. Fractional Brownian motion: a
maximum likehood estimator and its application to image texture.IEEE Transac-
tions on Medical Imaging, MI5(3):152–161, September 1986.

[12] B. Mandelbrot and J. Van Ness. Fractional Brownian motion, fractional noises and
applications.SIAM Reviews, (10):422–437, 1968.

[13] L. Pothuaud, E. Lespessailles, R. Harba, R. Jennane, V. Royant, E. Eynard, and C.L.
Benhamou. Fractal analysis of tabrecular bone texture on radiographs : Discriminant
value in postmenopausal osteoporosis.Osteoporosis International, (8):618–625,
1998.

[14] M. Turner, J. Blackledge, and P. Andrews.Fractal geometry in digital imaging.
Academic Press Professional, 1998.





