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Abstract

This paper describes a scheme for modelling and tracking the motion of ar-
ticulated bodies using a number of video cameras. The aim is to obtain com-
plete and accurate information on the three-dimensional location and motion
of the bodies over time. Applications include medicine, sports analysis and
motion capture for animation.

Feature extraction is avoided by placing markers at the joints of the body
so that model selection, marker-to-measured-pointassociation, occlusion and
the choice of tracking filter are the important issues. While the scheme is gen-
eral for any number of cameras, emphasis is placed on systems with a small
number of cameras where occlusions are a major problem. The system is an
amalgamation of new ideas and existing techniques drawn from a variety of
disciplines such as machine vision, geometric algebra and radar tracking the-
ory, which have been extended and developed for the marked joints/multiple
camera problem. The proposed schemes for modelling and tracking would
be easily adapted to markerless motion capture.

The paper concludes with examples of the system successfully tracking
limb motion using three cameras.

1 Introduction

The problem we address here is to determine and track parameters of an articulated body
moving through a sequence of video images. Thismotion captureis most commonly
applied to human subjects and is used for a variety of purposes, including medical inves-
tigation, sports analysis and animation. For example, the performance of a runner could
be quantified by knowing how the location and velocity of his legs vary during a filmed
race. Likewise, similar information can be extracted from a video of a person walking in
order to detect gait irregularities and to investigate possible causes.

The proposed system uses markers placed at the joints of the arm(s) or leg(s) being
analysed, although much of the scheme would be equally applicable to markerless motion
capture. The location of these markers on each camera’s image plane provide the input to
the tracking system with the result that the required parameters of the body can be esti-
mated to far greater accuracy than one could obtain in the markerless case. Techniques for
markerless measuring are usually based either on edge detection or colour flow fields, the
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performance of which vary greatly depending on lighting conditions, background com-
plexity and occlusions. The accuracy of such techniques is not currently sufficient for
biomechanical and medical analyses.

The system we will describe uses techniques for tracking and 3D reconstruction of
location which use all of the available data in all of the cameras. As such we can avoid
many problems which may occur when markers are occluded or joints become close or
cross over. In such cases, we wish to avoid both time consuming user interaction to guide
the tracker, or the introduction of more cameras. The aim is to provide a mathematically
optimal solution to marked-limb motion capture resulting in an automated low cost sys-
tem with high accuracy. Currently, the proposed system is implemented as an off-line
processor, however its execution time is comparable to the video sequence length and
with the correct computer it is likely that the system would be capable of tracking human
motion in real-time.

The proposed system is presented in three sections. Section 2 outlines the model
and its parameters, how they are expected to change over time and how they are related
to the measurements in the cameras. Section 3 describes a method of estimating the
parameters of this model given a sequence of measurements, and focuses particularly
on the problem of associating the markers being tracked with the points detected by the
cameras. Section 4 shows the results when the model and techniques are used to track
limb-motion in real subjects. The final section then summarises the performance of the
system and proposes possible extensions.

2 The Model

Our aim is to estimate and track a number of parameters of an articulated body. Prior
information on these parameters is contained in the model, which is composed of two
parts: the kinematic model and the measurement model.

2.1 Kinematic Model

The model chosen consists of a series of constrained linked rigid rods so that the location
and position of the articulated body is fully described by an origin point in space,a, the
lengths of each rod,li, and the angles which relate each rod to its neighbours,�i.

In this section and the next, it will be assumed that a single leg is being viewed and
tracked. We will also show how such a model can be extended to include other limbs,
thus building up a model of any desired complexity.

The parameters which fully describe the location and position of a leg are shown in
figure 1. In this model, the mid-point of the hips represents the reference pointa =
(Xa; Ya; Za). The hip is able to rotate freely abouta in three dimensions (a movement
described by two degrees of freedom, since at this link we are not concerned with rotation
about the axis of the rod) and the knee is able to move about the hip with three degrees
of freedom (where now we do model the rotation of the upper leg around its own axis).
Finally, the ankle and toe are modelled such that the allowed movements keep the links
representing the upper leg, lower leg and foot in the same plane.

When tracking parameters whose temporal kinematics are unknown, it is common
practice to assume the parameters follows a linear trajectory over small durations of
time [1, 2, 13].
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Figure 1: Parameters used to describe the position of a leg

We adopt this model and thus the evolution of the angular parameters is given by:�
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where the dotted variables represent the rate of change of the given angular parameter,vi
represents zero-mean process noise, andk is the frame number (or an index into discrete
time). The variance ofvi determines how much acceleration the angular parameters are
expected to undergo from one frame to the next.

This model can also be considered as a simplification of the AR process proposed
by [11]. In our case, however, no training is required and the process is capable of de-
scribing any motion.

The reference pointa is assumed fixed, thus the equation describing its evolution
through time is

a(k + 1) = a(k) + v(k) (2)

wherev is, once again, process noise. In this case, the variance ofv corresponds to how
likely it is that the position ofa changes from one time frame to the next.

We now define a state,x, which contains all the parameters which define the location
and velocity of a leg in time,(a; f�ig). Note that the state does not include the lengths of
the rods, as they are assumed known.

Combining the above equations produces the kinematic equation:

x(k + 1) = Fx(k) +Gv(k) (3)

whereF andG are constant matrices described by equations (1) and (2).
Similar sets of parameters can be used to describe the location and velocity of other

limbs.
State vectors containing information on different limbs could be stacked to form a sin-

gle state vector and theF andG matrices stacked diagonally to form the new coefficients
to the kinematic equation.

Many current systems [3, 9] do not attempt to model kinematic motion and instead
rely on the process noise,vi, to account for the change in limb position from one frame
to the next.






Other motion capture systems use complex models in which further parameters are
required to define the state’s expected trajectory through time [11, 3]. These extra param-
eters are contained in the matricesF andG and often need to be learnt from a series of
training data. Such models are therefore restrictive because they limit the types of motion
which can be tracked. To overcome this limitation, these systems are usually forced to
use mutiple models and include a mechanism for determining which model is most valid
at any given time.

We believe that the model proposed here is a good compromise between the two
existing modelling techniques.

2.2 Measurement Model

Each new video frame provides the system with a list of 2D points representing the detec-
tions of the markers on the image planes of the cameras. These points are related to the
state via the measurement equation:

y(k) = Hk(x(k)) +w(k) (4)

wherew is a zero-mean random variable representing noise at the detection process and
y is a stacked vector of detected points.

The functionH is dependent onk because not every marker may be detected in each
frame and camera. As the number of detected markers vary, so does the length ofy

and thus the dimensions ofH . Determining which detections correspond to the markers
being tracked, and therefore the contents ofy, is the association problem and is discussed
in detail in the following section.

The contents ofH was generated using geometric algebra (GA) [7] and then con-
verted to the Euler-angle formulation using the computer-algebra package Maple. If the
model expands (for example, if further limbs are added) then GA provides a framework
in whichH can be derived simply. Also, in order to implement the extended Kalman fil-
ter (discussed in the following section), the Jacobian ofH is required — a complex task
shouldH be written in terms of vectors and Euler angles, but one which is simple using
GA.

3 Tracking

The objective of the tracking filter is to estimate the state at any given time,x(k), given
the measurement at that time and all measurements prior to it. Two methods are discussed
in this section: the extended Kalman filter (EKF) [1] and the currently popular concept
of the Bayesian particle filter [6, 8]. Most applications of these filters to date have been
to single camera data. Before either method can be employed, however, it is necessary to
solve theassociation problem.

3.1 Association

At a given time,k, each of theM cameras viewing the articuled body detectsQk
m (m =

1 : : :M ) bright points. These points are due to either a marker placed on the body or an
error in the detection process, for example, if a background light or reflection is interpreted






as a marker. Also, a particular marker may not have been detected by every camera, either
because it was occluded from the camera’s view or because the detection process failed.

Thus there exists a requirement to determine which detected points in each camera
correspond to each of theN markers being tracked. This forms the association or corre-
spondence problem and its solution as presented here is a combination of techniques used
by radar engineers [10, 2] and single camera motion capture systems [4], extended to the
multiple-camera motion capture problem. We believe this technique for multiple point
association in multiple cameras to be novel.

Let 	k
i be a possible combination of correspodences of markers-to-measured-points

at timek. Indexi runs over the setf1 : : : Ikg, whereIk is the total number of possible
combinations:
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wherenPk denotes the permutations ofk fromn andnCk denotes the combinations ofk
fromn. The set	k

i is composed of three elements:

� �ki , the list of markers detected in each camera and the corresponding detection.
Let�ki (j;m) be thejth fmaker,detected pointg pair from cameram given the com-
bination i (j = 1 : : : Jkm, whereJkm is the number of markers that were detected
in cameram at timek).

� �ki , the list of markers that were not detected. Let�ki (p;m) be thepth marker
missing from cameram (p = 1 : : : (N � Jkm)) at timek.

� �ki , the list of detected points that do not correspond to any markers being tracked.
Let �ki (q;m) be theqth detected point in cameram at timek which belongs to this
set (q = 1 : : : (Qk

m � Jkm)).

By extending the argument proposed in [10], it can be shown that
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wherec is a normalising constant,PC(j) is the probability that the association of
marker to detected point is correct,PD(p) is the probability that markerp was detected,
PFA(q) is the probability that pointq was a false detection, andPR(j) is the probability
that the list of pointsj detected in each camera originated from the same point in space.

We desire a method of determininĝ	k
i , which maximises this expression, given that

it is computationally too expensive to evaluateP (	k
i ) for everyi. For example, if each

of three cameras tracking a pair of legs detected seven markers (N = 8, M = 3 and
Qm = 7 for all m), the total number of combinations is6:13� 1016!






Instead, theB most likely combinations of marker-to-detected-point correspondences
for each camera,P (	k

b (m)), are determined separately, resulting inBM possible combi-
nations whose probabilities are given by
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wherei0 is an index into theBM possible combinations andbm is the particular combi-
nation of marker-to-detected-point correspondences for cameram (bm = 1 : : : B) given
by i0. TheB most likely combinations of marker-to-detected-point correspondences for
each camera is determined by maximising
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which presents a considerably smaller search space than does equation (6).
The probability that a given marker-to-detected-point correspondence is correct,PC(�

k
b (j;m)),

is the likelihood that the distance,d1, between the detected point and the expected posi-
tion of the marker on the camera’s image plane is zero. In the implementation described
in section 4,d1 was taken to be Gaussian distributed with variance equal to that ofw(k),
the measurement noise.

The probability that a point is a false detection,PFA, is assumed constant. In many
applications of these techniques,PD, the probability that a marker is detected, is also
usually assumed constant. Here, however, we use the estimates of the marker locations
in space, the knowledge of how the markers are linked and the camera positions and
orientations to determine the likelihood that a given marker is occluded in a particular
camera. A marker is determined to be possibly occluded by a linked rod according to
whether it falls behind (when viewed from the camera origin) the plane formed by the
rod and the shortest line between the rod and the line of projection of the marker to the
camera plane. The probability of marker detection is then

PD(p) =

�
P 0

D if p is not occluded
P 0

D � exp(�d22=�2)=
p
2��2 if p is occluded

(9)

whered2 is the distance between the occluding rod and the line of projection of the marker
to camera plane,�2 is a measure of the width of each rod andP 0

D is the probability that
a marker not occluded by any limb is detected by the feature extraction procedure. It is
assumed thatP 0

D is constant. An example of the calculation ofPD appears in figure 2.
The computational requirements of this technique are improved further by only consid-
ering those combinations in each camera in which the detected point falls within a fixed
region around the expected location of the marker on that camera’s image plane. That is,
thosefmarker, detected pointg pairs for whichd1 is less than a constant threshold. This
approach is analogous to the clustering technique used by radar engineers [10, 2].
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Figure 2: (a) Example estimate of the location of a pair of legs, the projection of the
markers onto one camera’s image plane (the dotted line) and the points detected by that
camera (the�’s); and (b) the probability of detection,PD, for each of these markers
(P 0

D = 0:95)

3.2 Extended Kalman filter

Determining the most likely combination of marker-to-detected-point correspondences
gives the construction of the measurement vector,y(k). An estimate of the state,̂x(k),
can then be calculated using the extended Kalman filter (EKF) update equations [1]:

x̂(k) = x̂(k � 1) +W (k)(y(k) � F x̂(k � 1)) (10)

where

W (k) = P 0(k) hTk
�
hkP
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��1

(11)

P 0(k) = FP (k � 1)F T +Q (12)

P (k) = P 0(k)�W (k)
�
hkP

0(k)hTk +R
�
W (k)T (13)

hk is the jacobian ofHk evaluated atFx(k�1),Q is the covariance of the process noise,
v(k), andR is the covariance of the measurement noise,w(k).

3.3 Particle filtering

Use of the EKF implies our state estimate has a Gaussian distribution (of meanx̂(k) and
covarianceP (k)). As the measurement function,Hk, is non-linear, it is very unlikely that
the estimate of the state follows this distribution, even if the noises in the system (w and
v) do. By way of contrast,particle filtersattempt to fully describe the distributions of
variables of non-linear processes and as such have been used widely in radar tracking [6,
13], single camera computer vision [8] and other automated control (for example, [5]).

Particle filters work by propogating a number of points in state space (the particles)
through equations (1) and (2), weighting the samples using the measurement and re-
sampling the resulting distribution. In this manner, the distribution of the samples rep-
resent the distribution of the estimate of the state, the mean or mode of which can be used
as the best estimate of the parameters of the articulated body at any given time.






Weighting the samples by the measurement involves calculating the likelihood func-
tion, P (yjx). In the system we describe here this function is a multivariate Gaussian
distribution in measurement space with meany(k) (constructed from	k

i ) and covariance
R. An obvious extension of this technique is to use a likelihood function with multiple
modes to cater for the situation when the most likely marker-to-detected-point correspon-
dence,	k

i , was not the correct one. To create a likelihood function ofn modes, then
most likely correspondence combinations would be determined from equation (6). The
measurement vectors constructed from these combinations would form the location of
the modes and the probability of the combination would form their relative magnitudes.
This extension has been suggested to solve the problem of tracking multiple aircraft by
radar [12].

Particle filters are far more computationally demanding than EKFs, although have
the advantage of being able to incorporate further constraints in the model by limiting
elements of the state space to particular values. For example, the knee cannot hyper-
extend and samples which violate this can be suppressed.

4 Results

The system described was implemented and tested on a number of subjects. In each
case, three cameras were used and the system successfully chose the correct marker-to-
detected-point correspondences and produced a track of the location of the limbs through
time.

Figure 3 shows the output of the tracking system when it was used to follow both legs
of a person walking. Figure 4 shows similar output when the person is performing a tap
dance. In both cases, one leg passes in front of the other and many marker occlusions
occur. The tracking system, however, was still able to accurately determine the location
of the markers in 3D space. Both of these figures show the output when the extended
Kalman filter was used to perform the state estimate updates.

Figure 5 shows the output of the tracking system when it is used to follow the arms of
a golfer taking a swing. This figure shows the resulting track when the particle filter was
used (with 500 samples). The histograms of the samples at an example time for this anal-
ysis are also shown in this figure. It can be seen from these histograms that the estimate
of the state is approximately single mode and its distribution appears close to Gaussian.
This confirms the validity of the EKF and explains why it was able to successfully track
all test cases.

Figure 3: Example of the proposed system tracking the legs of a person walking






Figure 4: Example of the proposed system tracking the legs of a tap dancer

The particle filter took approximately four times as long to process each video se-
quence compared to the EKF, whose execution time was almost real-time. Also, the
estimates of the locations of the joints as produced by the particle filter contained more
noise than those produced by the EKF (in the case of the particle filter, the mean of the
samples was used as the state estimate).
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Figure 5: (a) Example of the proposed system tracking the arms of a golfer taking a swing
(the darker colours represents states at later times); and (b) Histograms of the elements of
the samples of the particle filter which parameterise the left arm.

5 Conclusions

A new scheme for modelling and tracking the location and motion of articulated bodies
using multiple cameras has been presented. In particular, we use novel methods for mod-
elling the kinematic motion and a new technique for calculating the marker-to-detected-
point correspondences.

The extended Kalman filter and particle filter were used to update the state estimates.
Both techniques proved successful, being able to track all test limbs applied to them

thus far; however the EKF was preferred because its computational demands were less
and there was no evidence of the state estimates being significantly non-Gaussian.






The system is currently general and works for any number of points and cameras
and any model. A future extension will be to extend the tracking algorithms to deal with
multiple EKFs or multi-modal particle filters, as this would be necessary for very complex
motions.
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