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Abstract

Long image sequences provide a wealth of information, which means that a
compact representation is needed to efficiently process them. In this paper
a novel representation for motion segmentation in long image sequences is
presented. This representation – the feature interval graph – measures the
pairwise rigidity of features in the scene. The feature interval graph is re-
cursively computed, making it a compact representation, and uses an interval
model of uncertainty. The feature interval graph forms the basis for new al-
gorithms for motion segmentation and occlusion analysis. Results of these
algorithms are presented on synthetic and laboratory scenes.

1 Introduction

The analysis of long image sequences is a growing area of research in computer vision.
Long sequence analysis is important for visual surveillance, mobile robotics, and other ar-
eas where a dynamic scene is observed over a long period of time. Long image sequences
provide a wealth of information, but this raises the problem of efficient representation.
It is not feasible to store an entire sequence, and so a compact representation is needed
which can be efficiently computed, and does not grow with the length of the sequence.

In this paper the particular problem of motion segmentation in long image sequences
is addressed. In motion segmentation the goal is to cluster the scene, or features extracted
from it, into regions having a common motion. The clusters correspond to independently
moving objects in the scene and so are useful for tracking and navigation.

Section 2 presents some previous approaches to the task of motion segmentation in
long image sequences. These approaches make use of the Kalman filter [2], which pro-
vides a compact and robust representation of information gathered from the image se-
quence. The Kalman filter, however, relies on a Gaussian model of uncertainty, and
assumes that the variances of these distributions are known. In Section 3 a new repre-
sentation for motion segmentation is presented. This representation, the feature interval
graph, measures pairwise rigidity information directly and shares many of the advantages
of the Kalman filter, but requires less a priori knowledge.

The feature interval graph is then used to develop new algorithms for motion segmen-
tation and the analysis of partial occlusions in the scene in Sections 4 and 5. An analysis
of these algorithms is given in Section 6, followed by some concluding remarks.
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2 Previous Work

Much of the previous work in long sequence analysis makes use of the Kalman filter [2].
The Kalman filter is used to combine information from a series of observations and is
based on a pair of model equations

xt = Axt�1 + ut�1; and (1)

yt =Mxt +wt; (2)

wherext is the state of the system at timet, yt is a measurement made to determine
the state at timet, andut�1 andwt are independent Gaussian noise vectors with known
covariance matrices.

The Kalman filter makes an iterative estimate of the state,~xt, and its covariance ma-
trix, P , using a recursive estimation procedure. The estimate at each time is based on the
previous estimate and the current measurement. The Kalman filter is an attractive model
for long sequence analysis for a number of reasons. The Kalman filter is efficient, since
all of the computations are linear, and only use information from the current and previous
frames. Since the filter is a recursive procedure, historical information does not need to
be stored. The Kalman filter is also robust with respect to measurement errors, which are
modelled using covariance matrices.

Zhang and Faugeras [11] use the Kalman filter to track line segments through an image
sequence. Three-dimensional line features are extracted from a scene using stereo, and an
extended Kalman filter is used to estimate their kinematic parameters – rotational velocity,
and translational velocity and acceleration. An ‘extended’ Kalman filter is used since
the relationship between a feature’s location and kinematics is non-linear. The Kalman
filter is extended by adding a linearisation stage, which approximates this relationship
by a linear one, and then applying a standard Kalman filter to the approximation. If a
feature is not tracked from one frame to the next, then its location is estimated using its
estimated kinematics. Occluded features tracked like any other until they reappear or are
not observed for a long period of time, at which stage they are deactivated.

Once the kinematic parameters of a set of features have been determined, they are
grouped into objects. If two features lie on the same rigid object, then their kinematic
parameters should be the same. To account for uncertainty, the Mahalanobis distance,
which may be thought of as a Euclidean distance weighted by uncertainty [1, page 75], is
used to compare features. If the distance between two features’ parameters is small then
they are determined to lie on the same rigid object.

Another approach to motion segmentation in long image sequences is ASSET-2 [10].
Rather than three-dimensional line features, ASSET-2 uses two-dimensional point fea-
tures. These have the advantage that they may be found in a wide variety of images
and need only a monocular image sequence. Features are tracked through the sequence,
and a Kalman filter is used to estimate their two-dimensional motion parameters. This
information is then used to cluster the features into rigid objects.

The motion of each feature over the lastN frames (typically 10) is used to reduce the
effects of noise. This motion,~u is compared to that predicted by a motion model,~um, by
computing a normalised distance

D =
j~u� ~umj

j~uj+j~umj
2

+ �
; (3)






where� is used to reduce the effects of noise when matching small vectors. The motion
model is initially that of constant motion, which can be initialised with a single vector,
but is replaced by an affine model once sufficient information is available. A feature is
added to a cluster if the distance defined by Equation 3 is less than some threshold.

The clusters are then tracked over time, again using a Kalman filter to estimate motion
parameters. Occlusion in the scene is analysed by the motion of these clusters, rather than
individual features. Occlusion is detected when two clusters overlap in the image, or when
the number of features in the cluster decreases rapidly. The shape of the occluded cluster
is frozen, and its motion is estimated from the visible portion. If a cluster disappears
entirely then the motion parameters are also frozen, and the location of the cluster is
predicted by extrapolation.

3 The Feature Interval Graph

In this section we present a novel representation for long sequence segmentation. This
representation, the feature interval graph, shares many properties with the Kalman filter.
The feature interval graph is recursively computed, relying on only the current and previ-
ous frames; is efficient to compute; and is robust with respect to measurement uncertainty.

The feature interval graph is constructed from three-dimensional features identified
in each frame. Such features may be located and tracked using established techniques in
feature detection, stereo, and motion correspondence. For the examples presented here,
the Harris feature detector [6], and stereo and motion correspondences were established
using bipartite graph matching techniques [3, 4]. Measurement uncertainty is accounted
for by using interval ranges rather than precise values to represent features’ locations.
Uncertainty is propagated through subsequent computations using interval arithmetic [8].

The feature interval graph is initialised with the first observation. A vertex is added
to the graph for each feature in the scene, and an edge links each pair of distinct features.
Associated with each edge is a measurement of the three-dimensional distance between
the features, computed using interval arithmetic. Each subsequent frame of the sequence
gives another set of observations and distance measurements. Over time, as more mea-
surements are made, the graph evolves and compactly represents the information that has
been gathered over the sequence. There are two main tasks to be made – to combine
information from multiple observations, and to account for missing observations.

At each frame a new measurement may be made for the distance between each pair of
points. These distances are represented as intervals, and are combined using an intersec-
tion operator. The new distance stored in the graph is the intersection of the old distance
and the latest observation. This represents the set of distances which are consistent with
all of the measured distances. If this intersection is ever empty then the distance between
the two features must have changed, and so the edge is removed from the graph.

The use of intervals to represent the locations of features and the distances between
them has the effect of making the edges of the graph slightly ‘elastic’. A small amount of
motion between features is allowed, and is considered the effect of measurement errors,
but motion which is too large to be accounted for by the estimated error bounds causes
the edge to be removed from the graph.

The second issue that needs to be accounted for is that of points which appear, dis-
appear, and reappear in the scene. The problem of distinguishing reappearance from






appearance is deferred until Section 5, but making this distinction is important so that
information in the graph may be retained across periods of occlusion. For now, we will
consider the effects of the appearance, disappearance, and reappearance on the feature
interval graph.

When a new feature appears in the scene, a new vertex is added to the graph. This new
vertex is linked to all other visible features’ vertices and the edge distances are initialised
with the current distance measurement. When a feature disappears the portion of the
graph relating to it is frozen. The location of the feature is estimated, as discussed in
Section 5, but the edges incident on the corresponding vertex are not changed. Features
which disappear are not immediately removed from the graph, since they may reappear.
Finally, a previously occluded feature may reappear. In this case information gathered
prior to the occlusion is combined with the latest observation. Edges observed only before
the occlusion retain their distance information, and those observed only after the occlusion
use the new information. Finally if an edge is observed both before and after the occlusion
the intersection of the old and new distance estimates is taken. In any case, edges which
have been removed prior to the occlusion are never restored.

An example of the feature interval graph construction from a synthetic sequence is
shown in Figure 1. A synthetic scene is used since it produces clearer results to illustrate
the process. Examples on laboratory sequences will be shown in the following sections.

Figure 1: Frames from a synthetic scene (top) and the feature interval graphs (bottom)
after (from left to right) 1, 2, and 3 frames of motion. As more frames are observed edges
linking points on different objects are removed, while those within an object remain.

4 Segmenting the Graph

If all of the edges linking separate objects were removed from the feature interval graph,
then the objects could be found as connected components of the graph. The use of com-
ponents, however, is very sensitive to extraneous edges in the graph. Such edges are often
present since the graph is initially assumed to be complete, and strong evidence is needed
to remove an edge.






Conversely if none of the edges within objects are removed, then cliques in the graph
– sets of vertices, each connected to all the others – could be used to find objects. The
use of cliques has the opposite problem to a component-based segmentation in that it
is sensitive to missing edges. Of more concern is the computational cost of a clique-
based segmentation. The cliques used to define objects in the scene should be as large as
possible, and the problem of finding the largest clique in a graph is NP-complete [5].

To overcome the problems associated with simple segmentation schemes we propose
an object definition based on triangles in the feature interval graph. Triangles, or 3-cycles,
in a graph are sets of three vertices, each connected to both of the others. Triangles
correspond to small rigid substructures in the graph, and lead to a segmentation method
which is robust with respect to a small number of missing or spurious edges in the graph,
and which can be efficiently computed.

To construct a triangle-based segmentation an auxiliary graph, the triangle graph, is
constructed from the feature interval graph. The vertices of the triangle graph correspond
to triangles in the feature interval graph, and two vertices are linked by an edge if the
corresponding triangles share an edge (or equivalently two vertices) in the feature interval
graph. A simple component analysis is then applied to segment the triangle graph, and
the segmentation is transferred back to the vertices of the feature interval graph.

Figure 2 (a) shows a graph which contains a number of problematic features. There
is a missing edge,E, a spurious edge,F , and a cut vertex,V . The graph has a single
component but intuitively seems to contain three ‘objects’. Figure 2 (b) shows the triangle
graph constructed from Figure 2 (a). The components of this graph correspond to the
desired object segmentation of the original graph.

(a)

E
V

F

(b)

Figure 2: The computation of the triangle graph. The feature interval graph (left) ap-
pears to have contain three objects, indicated by the dashed lines. The segmentation is
complicated by the missing edge,E,the spurious edge,F , and the cut vertex,V . The
triangle-based segmentation (right) has vertices (filled circles) constructed from connect-
ed triples of vertices in the feature interval graph (hollow circles). The components of the
triangle graph correspond to the desired segmentation.

Once the triangles in the graph have been labelled, the segmentation is transferred
back to the vertices of the feature interval graph. In most cases this is a straightforward
process, but some vertices in the feature interval graph, such as the vertex,V in Figure 2,
contribute to triangles on two or more objects. Such vertices’ classification is ambiguous,
and so they are labelled as such.

Problem arises when new points enter the scene. New features are connected to all
other visible features, and so can disrupt the segmentation. The edges associates with the
new features, however, have less significance than those which have been observed for
many frames, and so have undergone greater scrutiny. In order to overcome, a temporal






extension to the segmentation scheme outlined above is proposed. Each triangle is as-
signed an age, being the minimum age of its component vertices. The oldest triangles are
segmented first, and the remaining are added in order of decreasing age. If a new triangle
disrupts the segmentation of the older ones by merging two or more clusters then it is
disregarded in favour of the older, more trustworthy, information.

Figure 3 shows the results of the triangle based segmentation applied to the scene
from Figure 1. After 3 frames the objects have become distinct and are identified.

Figure 3: The object segmentation after 2 (left) and 3 (right) frames of motion in the
scene from Figure 1. The segmented features have been projected back onto the image,
and different shaped symbols represent different objects.

A more complicated case of motion segmentation is shown in Figure 4. This example
is a laboratory sequence filmed using stop-motion techniques. There are two objects in
the scene, composed of plastic blocks, and one moves across from the left. After 3 frames
of motion the feature interval graph appears confused, due to features appearing in the
scene, but the temporal analysis allows the triangle-based segmentation to identify the
two objects.

5 Occlusion Analysis

The final problem remaining is reasoning about occlusion. There are two main tasks to
be solved – estimating the location and detecting the reappearance of occluded features.
A good solution to the first problem will make the second problem much easier. If the
location of occluded features can be reliably estimated, then reappearance can be detected
when a ‘new’ feature appears where an occluded one is expected to lie.

Previous approaches to occlusion reasoning have either been feature- or object-based.
In feature-based approaches, such as the work of Zhang and Faugeras [11], the motion
parameters of individual features are estimated, and used to predict their locations should
they disappear. This approach relies on the motion parameters being constant, which
generally holds only for short periods of occlusion. This is taken into account by Zhang
and Faugeras by deactivating features which are occluded for long periods of time.

An alternative approach is to track higher-level objects rather than features. ASSET-2
[10], for example, tracks clusters of features which are partially occluded using the mo-
tion of the visible portion, and the invisible portion is assumed to follow the same motion.
ASSET-2’s approach allows for the motion of partially occluded objects to change, but
does not directly estimate the locations of individual occluded features, and this estima-
tion is needed to detect reappearance.






Figure 4: Frames (left), feature interval graphs (center) and motion segmentations (right)
for a laboratory scene after 2 (top) and 3 (bottom) frames of motion. Note that the feature
interval graph remains strongly connected due to new features appearing in the scene, but
the temporal analysis identifies the two objects.

We propose a hybrid approach for the analysis of partial occlusion. The rigid-body
transform (rotation and translation) of each object is computed using a least-squares tech-
nique [7], and then this transform is applied to occluded vertices associated with that ob-
ject. This means that information available from the visible portion is used, as in ASSET-
2, and the locations of individual features are predicted, as in Zhang and Faugeras’ work.

To apply this technique, it is necessary to associate occluded features with objects in
the scene. This may be achieved using the triangle-based segmentation strategy from the
last section. Triangles containing occluded features are taken to have an age of 0, and so
are grouped last. This means that information based on occluded features, which has no
direct evidence, is given the least weight in the temporal segmentation.

Once the locations of the occluded points are predicted, they are compared with fea-
tures which have just appeared in the scene. If a new feature appears where the occluded
feature is predicted to lie then they are considered the same, and are merged as described
in Section 3. Since features’ locations are represented as intervals, two features are in the
same place if the interval bounds on their locations intersect.

Figure 5, shows an example of the occlusion analysis in the example from Figure 4.
The region shown in the lower left corner of the rear object, which is occluded when the
other object moves in front of it.






Figure 5: Detail of some occluded features in the image sequence from Figure 4. The
three features indicated by arrows are occluded by an object which passes in front of
them. Their locations are updated over time, shown as hollow symbols, and they are
recognized when they reappear, allowing them to be correctly classified (right).

6 Analysis

Algorithms for long image sequence analysis need to be efficient in terms of both compu-
tational cost and storage requirements. The algorithms presented in the previous sections
satisfy these requirements. The feature interval graph update requires that every vertex
and every edge in the graph needs to be updated, and so requiresO(m+n) computations,
wherem is the number of edges in the graph, andn is the number of vertices, which is
also the number of features in the scene. In the worst casem � n2 so the graph update
procedure isO(n2). Similarly, information must be stored for each vertex and edge in the
graph, and so the storage requirements for the feature interval graph are alsoO(n2).

The object segmentation is a little more expensive. The feature interval graph may
have up toO(n3) triangles, and so the triangle graph hasO(n3) vertices. The triangle
graph is, however, a sparse graph – each triangle has at mostn adjacent triangles since
adjacent triangles differ by at most one vertex in the feature interval graph. This means
that the triangle graph has at mostO(n4) triangles. Finding the components of a graph
with v vertices ande edges requiresO(v + e) time [9, pages 426,437–438]. This means
that the time required to identify objects in a scene withn features isO(n3 + n4), or
O(n4), in the worst case. The space requirements for the triangle segmentation areO(n3)
to store the triangles, and the edges of the triangle graph may be generated as needed.

Figures 6 and 7 show the time and space required to process the examples used in
Sections 3 to 5. These timings are based on a C++ implementation of the algorithms
running on a 200 MHz Pentium-based machine under the Linux operating system. These
figures show that the computational time and cost depends primarily on the number of
features in the scene, and does not increase as more frames are observed.

The computation times indicate that for real time processing is possible for scenes
with up to 100 features or so, with moderate improvements in processor speed. Off-line
processing is expected to be feasible for scenes with several times this number of features,
but theO(n4) nature of the segmentation algorithm means that processing time increases
rapidly past this point. The storage requirements are modest, about 200 Kb in total for
the laboratory scene. By comparison, a stereo pair of PAL format colour images, such as
those used in this sequence, requires 2,340 Kb to store.






0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100 120 140 160

T
im

e 
(s

)

Frame

Graph Construction
Object Extraction

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

M
em

or
y 

(K
b)

N
um

be
r 

of
 F

ea
tu

re
s

Frame

Number of Features
Graph Construction

Object Extraction

Figure 6: Computational time in seconds (left) and storage requirements in kilobytes
(right) for a long synthetic sequence. The sharp rise in cost around Frames 88 and 89
is due to the introduction of several new features, with a corresponding increase in the
number of vertices in the graphs.
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Figure 7: Computational time in seconds (left) and storage requirements in kilobytes
(right) for the laboratory sequence.

7 Conclusion

In this paper a novel representation for motion segmentation in long sequences has been
presented. This representation, the feature interval graph, uses an interval model of un-
certainty and measures pairwise rigidity between features in the scene. Like the Kalman
filter, the feature interval graph is recursively computed so that a complete history of the
scene does not need to be stored, takes uncertainty and measurement errors into account,
and combines a sequence of uncertain measurements over time.

The feature interval graph differs from the Kalman filter in two main respects: an
interval, rather than statistical, method of reasoning about uncertainty is used and no
model of the motion is needed. The Kalman filter uses a Gaussian model of uncertainty
and a linear motion model. These both introduce parameters to the system which need to
be known, or estimated.

Using the feature interval graph representation algorithms for motion segmentation
and partial occlusion analysis have been developed. The motion segmentation algorithm
is based on finding small rigid substructures in the graph. This approach means that a
small number of errors in the graph can be overcome, and a temporal extension makes the
segmentation stable over time. The occlusion analysis is a hybrid of concepts from two
earlier approaches. The motion of the visible portion of a partially occludes object is used
to estimate its rigid body motion parameters, and these are used to predict the location of
occluded features.

The feature interval graph construction is an efficient process. Since the feature in-






terval graph is recursively defined, it is not necessary to store a complete history of the
scene. The fact that edges removed from the graph cannot be restored, however, means
that key information about the pairwise rigidity of features is not forgotten. The object
segmentation method is more computationally expensive, beingO(n4) for a scene withn
features, but is still practical for scenes with a modest number of features.

The feature interval graph can take several frames to converge. This is not a problem
from a computational viewpoint since in long sequences it is possible to wait for more
information before making a decision. Practically, however, this may be of concern. The
convergence of the feature interval graph could be accelerated by applying heuristics to
remove edges from the graph, or to reduce features’ initial connectivity. For example,
each vertex in the graph could be connected only to its nearestm neighbours. This would
also decrease the computational cost, since for a scene withn features the graph would
have onlyO(mn) edges and up toO(mn) triangles in the graph, each having at most
m neighbours. The triangle graph would, therefore, haveO(mn) vertices andO(m3n)
edges. Sincem is a constant, this approach would yield linear computational costs for
both the graph construction and object segmentation processes.
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