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Abstract

The hybrid Radon-Fourier technique has been proposed for the discrim-
ination and tracking of deforming and compound targets. The current work
investigates the technique’s unique statistical properties which make it inher-
ently robust with respect to performance. The Radon transform is used to
generate the geometric signature waveform of the convex hull of the target,
this then becomes the input to the Fourier Transform and the Fourier coef-
ficients determine the parameters associated with the shape and motion of
the target. Because, in general, relatively few points on the boundary of the
object define the convex hull they will follow a Poisson distribution. In addi-
tion, for each point in the set of points defining the convex hull, there is a high
probability that another neighboring point on or near the boundary may be
substituted for that point with no significant effect on the performance of the
algorithm. This means that the data may be extremely sparsely sampled with-
out a significant degradation in the performance of the algorithm and with a
corresponding reduction in the computational load. The theory is illustrated
using 2-D data. The extension of the technique to 3-D data is discussed and
is straightforward.

1 Motivation

The hybrid Radon-Fourier technique has been proposed as a solution to these machine
vision tasks[1]. The current work investigates the technique’s unique statistical properties
which make it inherently robust with respect to performance. The remainder of this sec-
tion deals with previous work concerning tracking and the ways in which it applies to the
current work.

In the early literature concerning motion tracking the Fourier Transform was pro-
posed as a potential means of tracking single objects in real-time[2]. However, the two
suggested methods, global transformation of the image data[3] and segmentation of the
object boundary prior to transformation[4], [5] were both seen to have drawbacks, which
have precluded their use in any general form.

Paul Hough [6] first introduced the Hough transform, a special case of the Radon
transform[7] in 1962. Since this time and as a consequence of its potential for grouping
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image data into perceptually meaningful features[8], the Hough transform has also been
used to track rigid objects. For example, in [9]. edge image points are selected at random
from two consecutive frames in a sequence of time-varying images. When the sampling
produces two pairs of pixels that are similar, i.e. having the same translational motion, the
similar translation is the estimated motion. Once detected, moving objects are segmented
from the image. This procedure is repeated frame by frame. Other previous methods
which use the Radon/Hough transform as part of a rigid object tracking algorithm do not
use the image data directly[10]. Optic flow estimates are made using the frame by frame
correspondences of each pixel of the image. The transformation process then groups
the pixels moving with coherent motions into objects. In addition to the computational
expense of the algorithm, the recovery of optic flow is an ill-posed problem and requires
additional constraints in order to regularize the problem.

In order to track deforming objects, techniques that use Kalman filtering have been
developed[11]. One of the most recent of these[12] uses measurements of gradient-based
image potential and optical flow along the boundary of the object as the input data to
the system. The method relies on the establishment of frame by frame correspondences
between points in the image. It detects and rejects spurious measurements which are
not consistent with previous estimation of image motion and is thus able to cope with
relatively slowly varying deformations of the moving object.

There is currently no solution to the problem of tracking an unknown compound target
that is relatively rapidly deforming as it moves. It is not possible to extend the available
techniques of frame by frame model-based reasoning or inter-frame correspondences be-
tween points in the image in order to establish the parameters of motion of such an target.
For this reason, the hybrid Fourier-Radon technique has been developed. The remainder
of the paper is dedicated to illustrating the theory associated with the technique and its
unique statistical properties.

2 The Radon Transform

The Radon Transform may be written in the convenient form:

H(p; �) =

1Z
�1

dxF (x)�(p� � � x) (1)

WhereF (x) is a function defined on a domainD. In two dimensions,�(p � � � x),
represents a delta function distribution situated along a line,L, with equationp � � �
x = 0 where� is a unit vector in the direction of the normal to that line andp is the
algebraic length of the normal. In three dimensions,�(p � � � x), represents a delta
function distribution situated over a plane, where� is still a unit vector but in the direction
of the normal to the plane andp is the algebraic length of the normal. For the purposes
of illustration it is convenient to present the two dimensional case. The extension to
three dimensions is accomplished by replacing the lines tangential to the shape in two
dimensions with the planes tangential to the shape in three dimensions.

It is of particular interest to consider the case in which the general functionF (x) is
replaced by a particular functionFD(x), where






FD(x) =

�
1; in D;
0; otherwise.

This definition corresponds to the transformation of a binary image and this is the type
of image transformed in the illustrations of the technique presented in this paper.

3 Generating the Convex Hull

The convex hull of a shape is defined as the minimum enveloping boundary, fitted to a
shape outline, that is nowhere concave. Murakami et al[13] have shown that the upper or
lower bounding curve of the Hough space can be used to determine the convex hull of the
shape under detection. This is because the endpoints of the tangents to the convex hull are
on lines, which are radially outermost with respect to a particular angle, the intersection of
the cosine curves that they generate will form the bounding curve of the distribution in the
transform space. Thus, it is the locus of the points forming the boundary of the transform
plane which yield the equations of the tangents to the convex hull. Fig. 1 - bottom row,
shows that if these tangents are plotted in image space they generate the convex hull of the
shape under detection. However, we do not need to consider all of the possible tangents to
the convex hull as shown in Fig.1 as some of these will only pass through one image point.
It is each intersection of the cosine curves that denotes the line joining two endpoints of a
particular tangent and it is these points of intersection that define the corners or lobes of
the convex hull as explained below.

In Fig. 1, the points marked A, B and C denote the image points that give rise to the
three humps indicated on the bounding curve. Point A generates a cosine curve which
is intersected by the cosine curve generated by point B and similarly for points B and C.
The minima are the points of intersection of the cosine curves. That is, the distance,�,
along the� axis, between the second and third minima on the bounding curve in transform
space gives the value of the angleABC in image space:

ABC = � � � (2)

Thus, in order to determine the convex hull of the shape under detection, it is only nec-
essary to determine the locus of the points of intersection of the cosine curves on the
boundary of the transform space. This holds true even when the shape is rounded be-
cause in the process of digitization any smoothly curving shape is expressed as a series
of connected short lines. The convex hull of such a shape will be a many-sided, convex
polygon.

4 The Fourier-Series Expansion

There are several methods of extracting the Fourier coefficients from boundary data. Us-
ing the radius vector method the boundary points of the object under detection are ex-
pressed in polar co-ordinates such thatr(�) represents the length of the radius vector
directed from the origin to the boundary point and��[0; 2�] is the angle between the ra-
dius vector and the horizontal axis. The radius vector is thus a periodic function of the
polar angle,�, and may be expanded into a Fourier-series of the form:






r(�) =
a0
2

+

1X
k=1

(ak cos(k�) + bk sin(k�)) (3)

wherek is a positive integer and the Fourier coefficients,a0, ak andbk, are given by:

a0 =
1

�

Z �

��

r(�)d� (4)

ak =
1

�

Z �

��

r(�) cos(k�)d� (5)

bk =
1

�

Z �

��

r(�) sin(k�)d� (6)

The radius vector is also called the geometric signature waveform of the shape.
The necessary conditions for a function to be expanded as a Fourier series are as

follows:
1. r(�) must be defined and single valued throughout the periodic interval.
2. r(�) must be continuous or have a finite number of discontinuities within the peri-

odic interval.
3. r(�) andr0(�) must be piecewise continuous in the periodic interval.
The first condition precludes the representation by a Fourier series of the boundary of

an object with re-entrant features. Many objects which we might wish to track have such
features. The second condition means that only a closed boundary may be represented by
a Fourier series and this is often not possible with noisy, incomplete or occluded image
data. In particular, a compound target made up of a group of objects will not have a closed
boundary. On a practical note, the input to the Fast-Fourier-Transform algorithm requires
the input data to be an evenly-spaced, binary-number of points and this condition has the
same disadvantages as the first and second conditions above.

5 The Radon-Fourier Connection

The current work is novel in that it uses the upper or lower bounding curve of the Radon/Hough
Transform, which, in the case of the normal parameterization[14], is also the geometric
signature waveform of the convex hull of the shape under detection, as input to the one-
dimensional Fourier Transform.

Inspection of Fig.2 shows that, for a circle centered on the origin and of radius30 pix-
els, the locus of the bounding curve of the Radon Transform corresponds to the geometric
signature waveform. See Fig. 2 - bottom right. Equation 4 shows thata0 is simply twice
the mean value ofr(�); in this case, the diameter of the circle. Thea0 coefficient can be
scaled but will not be affected by either rotation or translation.

If the first harmonic is considered,k = 1, then inspection of the RHS’s of equations 5
and 6 show that each is simply the definition of the Cartesian co-ordinates of the centroid
of the shape,(x10; y10), respectively. If Equation 3 is expressed in the form:

r(�) =
a0
2

+

1X
k=1

Ak cos(k� � �k) (7)






where:Ak =
p
an2 + bn

2 is the amplitude and�k is the phase of thekth harmonic,
then the amplitude and the phase of the first harmonic can be used to determine the co-
ordinates of the centroid. That is, if the circle is displaced such that it is no longer centered
on the origin then the effect of that translation,(x10 ; x20), on the distribution in transform
space is given by:

R(p; �) 7! R(p+ (x10
2 + x20

2)
1

2 cos

�
� � tan�1

�
x20
x10

��
; �) (8)

On the middle row of Fig.2, the circle has been displaced by(30; 30). The corre-
sponding calculated Fourier parameters are:A1 = 42 and�1 = 450. On the bottom
row the circle has been displaced by(�30;�30). The corresponding calculated Fourier
parameters are:A1 = 42 and�1 = �900. Thus, theA1 and�1 parameters describing the
first harmonic are not functions of the shape but of the displacement of the centroid of the
shape from the origin of the image.

It is possible to create various shapes by the addition of higher order harmonics to the
geometric signature waveform. Fig.3 - top row, shows an example of adding the second
harmonic in order to create an elliptical shape. The middle row shows the elliptical shape
displaced by(30; 30).

Any convex hull can be represented by a geometric signature waveform which will
have a canonical Fourier description generated such that its centroid is co-incident with
the origin. In this case each of the�k in equation 7 will have a value of�ko depending on
the starting point used to generater(�).

If the shape is rotated about the centroid by an angle,�r, this causes a shift in the�
direction only. The original and new transforms are related by:

R(p; �) 7! R(p; � + �r) (9)

Substituting for� in equation 7:

�k 7! �k0 � 2�r (10)

On the bottom row of Fig.3 is the image of the elliptical shape rotated by an angle of
45o about its centroid and then shifted by(30; 30). From the canonical value�20 and the
calculated value of�2 when the shape is rotated we can determine the angle of rotation
to be45o. Thus the angle of rotation about the centroid can be deduced using any of the
calculated�k , for k > 2.

6 Statistical Properties of the Technique

The computational load associated with calculation of both the Radon and the Fourier
transform can be prohibitive in the case of real-time applications. Given the proposed
combination of both transforms, it is of interest to consider ways in which the data may
be sampled and to quantify the effect that such sampling may have on the performance of
the algorithm.

In general, relatively few points on the boundary of the object define the convex hull:
thus, it is expected that they will follow a Poisson distribution given by:






pX(x) =
e���x

x!
(11)

In addition, for each point in the set of points defining the convex hull, there is a high
probability that another neighboring point on or near the boundary may be substituted for
that point with no significant effect on the performance of the algorithm. Small random
perturbations in the position of each individual point in a set of points will tend to cancel
out other perturbations such that the overall effect is within the range of errors introduced
by digitizing the image or in calculating the parameters. This means that there are a
combinatorial number of sets of points which may be used to define the convex hull
without a significant degradation in the performance of the algorithm. The expectation
is that the data may be extremely sparsely sampled without a corresponding reduction
in the performance of the algorithm. What follows is a quantitative investigation of the
statistical properties of the technique using real data.

6.1 Quantitative Analysis of Statistical Properties

In order to investigate quantitatively the statistical properties of the technique it is first
necessary to ascertain how many points on the boundary of an object define the convex
hull. This can be done by determining the number,k, of intersections of cosine curves on
the bounding curve in the transform space. The proportion of such points within the edge
image data is given by:p = k=N ; whereN is the total number of edge points.

If we randomly removen of the edge image points, without replacement, then for
� = np, the probability of removing allk points in a sample of sizen, wheren � k, may
be expressed as:

P (k) = 1�

k�1X
x=0

e���x

x!
(12)

In order to test the validity of this hypothesis the following experiment was carried
out using the real image data. A photo of three starship objects was taken with a flash
camera using a black and white film. To segment the objects from their background a
median filter was applied to the image to remove the bright spots introduced by the flash.
This image was then averaged to remove the uneven background lighting effect. The
processed image was edge detected and thresholded to produce the data required as input
to the Radon transform. Following the transformation, the coordinates of the bounding
curve were determined and used as input to the FFT. The Fourier coefficients were then
used to calculate the(x; y) coordinates of the centroid of the convex hull of the formation,
see Fig. 4, top right. The calculated values of the centroid coordinates are rounded to
integers because the smallest unit of measurement in a digitized image is one pixel. This
introduces a digitization error or�1 in each of the calculated values.

The transformation of the compound target produces a bounding curve composed of
three intersecting cosine curves (see Fig. 4, bottom left). What this means is that three
points in the edge image are defining the convex hull of the formation. Clearly the convex
hull has a more detailed shape, however, the quantisation in the transform space is not
able to resolve this detail.






A percentage of the edge points was randomly removed from the data set of edge
points without replacement. This was repeated 100 times each, for a number of percent-
age values in the range [10%-99%]. The sequence of random numbers used had21492

numbers before any sequence of numbers would repeat. In addition, each trial was made
statistically independent of any other trial by using a fresh seed to generate the first ran-
dom number in each series of 100 trials and an additional randomizing shuffle to generate
a list of seeds for each of the 100 trials in any given series.

The standard deviation in the calculated centroid coordinates was chosen as a measure
of the performance of the algorithm. Thus, if the Poisson distribution was the only factor
effecting the performance of the algorithm as points are randomly removed without re-
placement, then we would expect the degradation in the calculated values of the standard
deviation to vary according to the form of the curve generated by Equation 12 with a value
of k = 3.

Fig. 5 shows the standard deviation in the 100 calculated values of thex coordinate of
the centroid at each point in the range of percentage points tested (each point is ringed);
also shown is the curve generated using Equation 12 for a value ofk = 3. We see that
the shapes of the two curves are different. The difference is explained by the effect of the
combinatorial number of sets of points able to generate a good estimate of the centroid.
A dotted line along the value of 1 represents the digitization error. The standard deviation
does not exceed the digitization error until the 97% point is passed. At the 99% point
the standard deviation is still relatively small: a value of less than two pixels. For this
particular image the size of the smallest circumventing circle (shown in Fig. 4, top right)
is 280 pixels. This gives an error in estimating thex coordinate of the centroid of�0.7%
of the size of the target at the 99% removal point. A similar result was obtained for they
coordinate of the centroid.

Thus, instead of the standard deviation increasing to exceed the digitization error at
the 70% removal point, (as would be the case if the results were attributable simply to the
Poisson statistics of the data), we see that the performance does not begin to degrade until
the 97% removal point has been reached. In addition, the degradation in performance is
relatively small even at the 99% removal point. To illustrate this, the scatter in the(x; y)
coordinates resulting from 500 independent trials at the 95% and the 99% removal points
was determined. The maximum scatter was 1.2% and 2.8% of the target size in the case
of the 95% and 99% removal points respectively.

7 Conclusion

The hybrid Radon-Fourier technique has been proposed for the discrimination and track-
ing of deforming and compound targets. The current work investigated the technique’s
unique statistical properties. The Radon transform was used to generate the geometric
signature waveform of the convex hull of the target, this then became the input to the
Fourier Transform and the Fourier coefficients determined the parameters associated with
the shape and motion of the target. In general, relatively few points on the boundary of
the object define the convex hull; thus, they will follow a Poisson distribution. In addi-
tion, for each point in the set of points defining the convex hull, there is a high probability
that another neighboring point on or near the boundary may be substituted for that point;
it was shown that, because of this, the data may be extremely sparsely sampled without






a significant degradation in the performance of the algorithm and with a corresponding
reduction in the computational load. The theory was illustrated using 2-D data. The ex-
tension of the technique to 3-D data was discussed and is straightforward.
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Fig. 1 Top: Intensity map of transform plane generated by shape on the right
Bottom: Bounding curve and corresponding tangents in image space
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Fig. 2 Left: Images of circles Middle: Intensity maps of transform planes
Right: Fourier coefficients,Ak

p

100 200 300

−100

0

100

0 5 10
0

50

100

A
k

 φ
2
 = 180o

p

100 200 300

−100

0

100

0 5 10
0

50

100

A
k

 φ
1
 = 45o

 φ
2
 = 180o

p

θ (Degrees)
100 200 300

−100

0

100

0 5 10
0

50

100

A
k

k

 φ
1
 = 45o

 φ
2
 = −90o

Fig. 3 Left: Images of ellipses Middle: Intensity maps of transform planes
Right: Fourier coefficients,Ak
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Fig. 4 Top Left: Radon Transform Right: Binary Edge Image of Formation
Bottom Left: Upper bounding curve of transform space Right: Fourier Coefficients
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Fig. 5 Standard deviation in calculating x coordinate of centroid





