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Abstract

High-dimensional data, such as images represented as points in the space
spanned by their pixel values, can often be described in a significantly smaller
number of dimensions than the original. One of the ways of finding low-
dimensional representations is to train a mixture model of principal compo-
nent analysers (PCA) on the data. However, some types of data do not fulfill
the assumptions of PCA, calling for application of different subspace meth-
ods. One such a method is ICA, which has been shown in recent years to
be able to find interesting basis vectors (features) in signal and image data.
In this paper, a mixture model of ICA subspaces is developed similar to a
mixture model of PCA subspaces proposed by others. The new algorithm
is applied to a natural texture segmentation problem and is shown to give
encouraging results.

1 Introduction

Image data can often be described in a much lower number of parameters than there are
pixels in the original image, due to the large redundancy in normal images and the fact
that neighbouring pixels are highly correlated. Representing images as points in a high-
dimensional space does not allow easy exploitation of this redundancy. Structured images
can more naturally be represented by subspaces, with points in the subspace correspond-
ing to slightly translated, rotated, scaled etc. versions of the same image. The subspace
then becomes an invariant description of a single image or image patch. Recent years
have seen a renewed interest in such subspace models to model (image) data. Originally
proposed as early as the 1970s and 1980s, a problem then was the large computational
cost of these methods. With the advent of more computational power, fitting subspace
models to large datasets has become feasible. Moreover, it is now also possible to train
mixture models of subspaces to model data non-linearly by approximating its distribution
by a number of linear subspaces.

In recent work, several methods to do this have been proposed and applied (see [12]
for an overview). In [6], an EM algorithm was developed to find mixtures of local prin-
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cipal component analysers (PCA), which was applied to handwritten digit recognition
invariant to size, skew etc. This model was refined by Tipping and Bishop in [12], in
which a probabilistic formulation of PCA was proposed and used in conjunction with an
EM algorithm. A similar but simpler method, usingk-means clustering, was proposed
in [3] and [4] and applied to image segmentation, object recognition and image database
retrieval. Although in principle any of a number of methods can be used to find mix-
ture models, probabilistic formulations of subspace-finding methods allow for a natural
extension using a method very much like that used for learning mixtures of Gaussians.
Therefore, we will consider Tipping and Bishop’s algorithm [12] for learning mixtures of
PCA models, which will be discussed briefly in section 2.

An open problem is that this PCA subspace approach works well only for structured
image content, e.g. regular textures or edges. However, if the image contains more nat-
ural, irregular textures, a PCA description quickly becomes less discriminative. This is
where other subspace methods can come in, such as independent component analysis
(ICA), which recently has received much attention. The goal of a method for ICA mix-
ture models should be two-fold: firstly, to find subspaces; secondly, to find characteristic
directions in each model giving a better description of the data than PCA. This is the
contribution of this paper: in section 3, a mixture model of ICA subspaces is developed
analogous to the PCA mixture model of Tipping and Bishop mentioned before. As an
illustration of possible applications, in section 4 the technique is used for image segmen-
tation and compared to mixtures of PCA models. Section 5 ends with some conclusions.

2 Probabilistic PCA

Tipping and Bishop [12] found a probabilistic formulation of PCA by viewing it as a latent
variable problem, in which thed-dimensional observed data vectortn, n = 1; : : : ; N can
be described in terms of anm-dimensional unobserved vectorsn and a noise term,

tn = Asn + � (1)

whereA is ad �m matrix (m < d) and� is multivariate i.i.d. Gaussian with a diagonal
covariance matrix�2I. The probability of observing data vectortn given the latent vector
sn is (writing � = 1

�2
):

p(tnjsn;A) =
1
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Using a Gaussian prior (zero mean, unit standard deviation) over the latent variables
sn, an EM algorithm can be developed to find the parameters�ML andAML. Further-
more, the algorithm can be quite naturally extended to find mixtures of such models, by
introducing a mean�i for each modeli and re-estimatingp(tnji) and the prior probabil-
ities for each model,p(i), in each step of the EM algorithm.

3 Probabilistic ICA

Independent component analysis (ICA) finds directions in the data which lead to indepen-
dent components instead of just uncorrelated ones, as PCA does. There is a wide range






of algorithms for performing ICA, based on entropy minimisation, minimisation of mu-
tual information, optimisation of a non-Gaussianity measure, and maximum likelihood
(ML). The latter leads to a probabilistic formulation. Recently, a mixture model of ML-
trained local independent component analysers has been proposed [9]. A drawback of
this method is that it does not extend easily to finding true subspaces; that is, only spaces
with as many dimensions as the original space can be found. In applications such as im-
age coding this need not be a problem, as the input data fills the original space quite well
(studies have shown that even overcomplete bases can be found [10]). However, in tasks
such as segmentation or image description for image database retrieval, images can often
be described in a number of dimensions far lower than the number of pixels in a local
window. Therefore, in this section a probabilistic mixture model of true ICA subspaces
is developed, based on work performed earlier by MacKay [11], Lee et al. [8, 9], Lewicki
and Sejnowski [10] and Hyv¨arinen [7].

3.1 ICA subspaces

For the formulation of an ICA subspace model, the starting point is the same model as
used for PCA (eqn. (1)), where in ICA terminology the vectorssn are thesources. The
difference is that these sources are not assumed to have a Gaussian distribution; instead,
ICA looks for super-Gaussian or sub-Gaussian distributions. This necessitates a gradient-
following algorithm in which the distribution of the estimated sources is made to deviate
from a Gaussian. Note that for the following derivation the pseudo-inverse of the mixing
matrixA is used to find the unmixing matrixW, i.e. W = A

+ = (AT
A)�1AT and,

conversely,A =W
+ =W

T (WW
T )�1.

The likelihood for one vectortn is:

p(tnjA) =

Z
p(tnjs;A)p(s)ds (3)

The integral in the likelihood (3) can be approximated byp(tnjsMP ;A)p(sMP ) [2, 11],
wheresMP is the most probablesn�. However, the result will have to be normalised for
the change in volume under the Gaussian due toA. The log likelihood thus is:
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whereun =Wtn is an estimate ofsn. We can now derive a learning rule inA by differ-
entiating (4) w.r.t.A, but we chose to find a learning rule inW instead (see appendix A
for a derivation):
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ln p(tnjA) = A

T
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T
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where�(�) is thescore function, indicating what type of distribution the algorithm looks
for. Following Lee and Sejnowski [8], two different functions can be used to find ei-
ther super-Gaussian or sub-Gaussian sources, i.e. source distributionsj which are more

�From here on, for notational simplicity we will simply writesn






peaked or less peaked than the Gaussian:

super-Gaussian(kj = 1) : �(un;j) = � tanh(un;j)� un;j

sub-Gaussian (kj = �1) : �(un;j) = tanh(un;j)� un;j (6)

whereun;j is thejth dimension of thenth source vector, andkj is an indicator which
allows for automatic switching between super-Gaussian and sub-Gaussian models [8]:

kj = sign
�
E(sech2(un;j))E(u2n;j)�E(un;j tanh(un;j))

�
(7)

These expectations are taken over the entire dataset, i.e. forn = 1; : : : ; N . If a matrix
K is constructed withkj , 1 � j � m, on the diagonal, eqns. (6) simplify to�(un) =
�K tanh(un) � un and the summed gradient for a matrixt containing all pointstn,
1 � n � N , becomes
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ln p(tjA) = �
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�
+NAT � (K tanh(u) + u) tT (8)

The term(I�AW) describes the difference between the actual inverse and the pseudo-
inverse, since ifA =W

�1 the first term adds up to zero, and Lee’s algorithm [8] results.
In a paper by Lewicki and Sejnowski [10], another approach is chosen. Instead of working
out the true derivative of the target function w.r.t.A, they approximateA by only that
part of it which can be inverted; therefore,(I �AW) adds up to zero. Although useful
when finding overcomplete bases, this approach does not seem right here: it means there
is no longer an incentive to look for subspaces at all. SinceAW 6= I, there will always
be a misfit betweent andAu, and this should somehow be expressed in the likelihood
function.

3.2 Automatic sphering

As incomplete bases are learned, the algorithm will look for both subspaces and indepen-
dent components. If these goals are contradictory (i.e. looking for independent compo-
nents in a predominantly Gaussian subspace), depending on the variances in the indepen-
dent components and the main subspace, the algorithm will favour finding subspaces over
finding independent components. To make the algorithm find independent components
invariant to variance, the data can be sphered first. That is, the covariance matrix of the
data can be required to be unity, i.e.C = E(ttT ) = I. In a mixture model (discussed
below) it is not possible to pre-sphere the data, as it is unknown which data points will be
assigned to which model. It is possible however to build the sphering into the model by
estimating the covariance matrix and sphering in the algorithm itself, usingt

0
n = C

� 1

2 tn

andun = Wt
0
n. The sphered data and corresponding sources can then be used in log-

likelihood (4) and also in the gradient (8), giving (as� can be fixed at 1, butC has to be
incorporated in the log-likelihood):
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3.3 A mixture model

Following Lee, it is now straightforward to construct a mixture model. Say that the goal
is to findh m-dimensional ICA models. The overall model now becomes [2, 9]:

p(t) =
hX
i=1

p(tji)p(i) (11)

The values to be estimated areAi, si and�i: the mixing matrix, the sources and the
offset for modeli, respectively. Furthermore, for the automatic switching between super-
Gaussian and sub-Gaussian models a switching matrixK

i can be used and for the auto-
matic sphering a covariance matrixCi can be estimated for each model.

For estimation ofp(tji), the source component densities can be approximated by [9]:

super-Gaussian(kj = 1) : ln p(un;j) � �jun;j j (12)

sub-Gaussian (kj = �1) : ln p(un;j) � � ln cosh(un;j)�
(un;j)

2

2
(13)

Estimation ofp(tnji) can be done using (10), andp(tn) can be calculated from (11) (note
that the only difference is that the model mean�i has to be subtracted fromtn before-
hand). The probability of a modeli given a data vectortn can be found using Bayes’ rule
to bep(ijtn) = (p(tnji)p(i))=p(tn), giving the following formulae for the various model
parameters, for the full algorithm including automatic switching and sphering (the tilde
indicating the new estimates):
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i) (14)
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Finally, using Bayes’ rule the learning rule for the unmixing matrixWi can be expressed
as follows:

@

@Wi
ln p(tn) = p(ijtn)

@

@Wi
ln p(tnjA

i;�i) (20)

i.e. simply the gradient (10) weighed byp(ijtn).
Figure 1 gives examples of a 1D subspace mixture model trained on 2D data and a 2D

subspace mixture model trained on image data. Note how, for the 2D data, variance in a
certain direction gets ignored if the direction contains a Gaussian distribution, due to the
sphering.






−10 0 10 20 30 40

−5

0

5

10

15

20

25

30

35

(a)

S1,D1: k = 1.84 S1,D2: k = 3.73

(b)

Figure 1: (a) Three 1D ICA models, each cluster containing one sub- or super-Gaussian
component (which was found) and one Gaussian component. (b) ICA basis vectors found
in patches (round, 16 pixel radius) taken from a natural texture (top) and the corresponding
sub-Gaussian (left) and super-Gaussian (right) projections of the image samples onto the
basis vectors, with their kurtoses.

4 Application: image segmentation

As an illustration of the differences between the methods, both PCA and ICA subspace
mixture models are applied to some image segmentation problems. The problems are
deliberately kept simple to highlight the differences between the methods.

PCA subspace mixture models have already been shown to work quite well onstruc-
tured textures [3]; these results are not repeated here. Instead, five irregular, natural tex-
ture images from the Brodatz album were artificially combined (using a cross-shaped
mask) to create 10 2-texture images and scaled to a range of[0; 1]. The images are shown
in figure 2. On these images, PCA and ICA mixture models were trained each containing
two 2-dimensional subspaces. The training data consisted of 1000 round image patches
extracted from the combination images, where the radius of the patch was 8 pixels. Pre-
processing the entire data set using PCA to remove noise directions (leaving eigenvectors
explaining 90% of the variance) typically left 10-20 of the original 44 dimensions. Note
that, besides speeding up the algorithms, this is necessary to make the data meet the as-
sumptions of i.i.d. Gaussian noise outside the subspaces better.

Both the PCA and ICA algorithm were initialised by setting the model origins to
grey-values found byk-means clustering. All other parameters were initialised to small
random values, and the prior probabilities were initially set equal. The PCA mixture
model needed no further settings, but the proposed ICA method needed careful setting of
a learning rate, which was set to1:0�10�5. Both methods were stopped when the change
in the likelihood fell below a threshold (1:0 � 10�8) or after 5000 iterations, whichever
came first. Training the ICA mixture models is a computationally very intensive process.
Speed-ups are possible, such as only re-estimating the covariance matricesC

i and the
switching matricesKi once in a number of iterations, but these were not employed here.

Figure 2 shows the resulting segmentations, found by assigning each central pixel of
an image patch the label of that subspacei for which p(tnji) was highest. It is immedi-
ately clear that neither subspace method is ideal for this type of application. Some texture
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Figure 2: Segmentation results on a number of combinations of natural textures from the
Brodatz album, by PCA, ICA and Gaussian mixture models.






combinations (2, 3, 8, 10) are segmented relatively well, given the difficulty of the task;
others (5, 6, 7, 9) are too hard to segment and in the remaining segmentations (1, 4) the
basic shape of the cross can be seen, but the overall segmentation is rather poor. The
results do illustrate, however, that the ICA subspace mixture models have found more
descriptive models than the PCA ones in most cases, giving better segmentation results.

A criticism of the ICA model might be that, unlike PCA, it uses the entire covariance
matrix instead of just the covariance structure in the subspace. To verify whether this
might be responsible for the better behaviour, the images were also segmented by training
Gaussian mixture models with full covariance matrices (or, equivalently, a PCA model
wherem = d). The use of the covariance matrix indeed seems to be the main reason for
the better behaviour. However, in some cases (2, 3, 4, 10) segmentations by the ICA model
are still slightly better (i.e. showing less oversegmentation) than those by the Gaussian
mixture model, indicating that some useful independent component directions have been
found in the data.

5 Conclusion and discussion

Analogous to the probabilistic PCA mixture model of Tipping and Bishop, an ICA sub-
space mixture model has been developed. This algorithm generalises the ICA mixture
model proposed earlier by Lee et al. Experimental results suggest that for certain kinds
of problems, such as segmentation of natural textures, mixtures of ICA subspaces can
perform better than mixtures of PCA subspaces.

Although the model has been shown to work well on 2D artificial data, the advantage
of using ICA mixture models in image segmentation has not yet been proven conclusively.
An open issue is to what extent its better performance is caused by the fact that the ICA
model estimates a full covariance matrix for each subspace, whereas the PCA model
only estimates covariance within the subspace. As sphering is a necessity to obtain truly
independent components, it would be beneficial to find a formulation of the algorithm in
which there is no need to estimate the entire covariance matrix. This will also lower the
number of samples needed to train the model.

Another point for further research is the speed of the algorithm, which should be im-
proved to facilitate application. Finally, with respect to the segmentation application, it
would be beneficial to find ways of automatically choosing optimal window sizes, sub-
space dimensionalities etc.
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A Derivation of the learning rule

Differentiating eqn. 4 with respect toW and ignoring constant terms gives
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whereu has been partially replaced byWt
y.

Differentiating (I) w.r.t. a single matrix elementWij [5] and rewriting gives, using
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whereW(i;j) is an all-zero matrix with only elementWij set to 1. Note that since(A)
and(D) are each others transposed and give scalars, they are the same. This also holds
for (B) and(C). Therefore, the total expression for(I) becomes
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which for full matrices is
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For (II), following [5] the derivative can be found to be simply
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Finally for (III), using the chain rule,
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or, for full vectors,
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ln p(u) = �(u)tT (27)

Taking(I)-(III) together, the gradient becomes
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Note that it is possible to apply the often usednatural gradienttechnique [1] by using:�
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to speed up convergence.

yIn this appendix, for brevityt will be used to denote one data vectortn andu to denote one source estimate
un. All formulae hold identically for matrices in which the columns are these vectors.





