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Abstract

This paper describes a novel approach for recovering the structure and
motion of a rigid textured surface from an image sequence. Camera focal
length is also recovered, yielding metric estimates of the structure without
the need for pre-calibration. The key innovation is the use of laffale flow
parametersas the measurements within an extended Kalman filter (EKF)
estimation framework, in contrast to feature correspondences or optical flow
used in previous approaches. This enables surface normals to be recovered
in addition to depth, unlike a feature correspondence scheme, but without the
computational limitation of an optical flow approach. The method is based
on equating the affine parameters to a local linearisation of the 2-D motion
field and using the EKF to provide recursive estimates of the 3-D structure
and motion. Experiments on both synthetic and real sequences demonstrate
that the approach has considerable potential.

1 Introduction

The problem of how to recover 3-D rigid structure and motion in a scene from 2-D motion
observed in an image sequence has been the subject of considerable research in computer
vision. Although diverse, this research can be broadly divided into two classes depending
on the type of measurements used: either feature correspondences tracked over time;
or optical flow fields obtained from adjacent frames. The former has received the most
attention and considerable advances have been made in developing algorithms using both
calibrated and uncalibrated cameras [5, 11, 6].

Nevertheless, there are drawbacks to using feature correspondences. Solving the cor-
respondence problem for scenes not containing well-defined features such as corners, etc,
can be problematical. This is the case when dealing with textured surfaces, for exam-
ple, in which feature location from frame to frame is often ambiguous. Feature-based
techniques also result in sparse point-wise structure information which needs to be inter-
polated if full 3-D structure is to be obtained. Dense structure can be obtained following
determination of epipolar geometry, as in [14] for example, although such methods rely
on sufficient translations between frames [6].

In contrast, optical flow measurements are better suited to textured surfaces and in-
cremental motion between frames, and have the potential to provide dense structure in-
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formation. Tracking is, however, more difficult when dealing with optical flow, requiring
intermediate segmentation for example, and the large number of data points leads to a
significant increase in computation. Consequently, although the computational problems
can be reduced to some extent [18], optical flow schemes have been based on either sam-
pling the flow field or limiting the estimation to pairs of frames [1, 4, 12]. These and other
optical flow approaches also assume knowledge of the camera parameters, ie focal length,
and hence require a pre-calibration step if metric estimates are to be obtained.

The method described here is designed to address these problems. The key innovation
is the use ofaffine flow parameteras the measurements in an extended Kalman filter
(EKF) estimation framework. These are computed and tracked within local windows in a
sequence and approximate the 2-D motion fields generated by surface patches moving in
the scene. The advantage of using them in preference to dense optical flow measurements
is twofold: the number of ‘affine patches’ will be relatively small in a typical sequence;
and they provide an effective way of tracking motion fields [16, 10, 17]. Despite this,
direct use of affine flow parameters for recovering 3-D information has received surpris-
ingly little attention. The notable exceptions are Negahdaripour and Lee [13] and Meyer
[9], who describe closed-form solutions using the formulations of Longuet-Higgins and
Pradzny [7] and Subbarao and Waxman [15]. However, these are 2-frame deterministic
algorithms which are sensitive to noise, relying on affine parameter differences [13, 9]
and flow time derivatives [9]. They also require knowledge of the camera parameters.

The noise sensitivity problem is tackled here by using an EKF to provide recursive
estimates of the structure and motion in a similar way to that of Murray and Shapiro [12].
However, it differs in two important respects. Firstly, a local linearisation of the motion
field about the centres of the projected surface patches is used in order to equate with
the affine flow parameters. Secondly, the method is based on a camera geometry that
decouples focal length from depth, as used by Azarbayejani and Pentland in their feature
correspondence technique [2], enabling estimation of the focal length and so providing
metric estimates of the structure without the need for pre-calibration. These are, for each
patch, a depth and surface normal for the corresponding point on the 3-D surface, in
addition to the global rectilinear and angular velocities of the surface. The resultis aricher
description of the structure than that provided by a feature correspondence technique, but
obtained without the computational disadvantages of an optical flow scheme.

The next section describes the camera, motion and structure models used, followed
in Section 3 by details of the estimation procedure. Results of experiments performed
on synthetic and real sequences are presented in Section 4. The paper concludes with a
discussion on the performance of the technique and directions for future work.

2 Camera, Motion and Structure Models

We assume that a rigid surface in a 3-D scene is moving relative to a stationary camera.
Points in the scene are defined with respect to the camera reference frame, witixthe
aligned with the optical axis and the image plane lying intheplane. As in [2] and as
illustrated in Fig 1, the coordinate system origin is at the point where the optical axis cuts
the image plane. For this model, perspective projection of a 3-D poiat(X;, X2, X3)

onto an image point = (z,x») is given by

z; = X;/(1+ BX3) 1)
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image plane Ny

Figure 1: Camera and surface model

whereg = 1/f is the inverse focal length. In contrast to the usual approach in which
the origin is at the centre of projection, this model decouples the representation of depth
from that of the camera, an essential element when trying to estimate both depth and focal
length [2]. The 2-D motiox = (1, #2) induced by the motion of a 3-D point is then

& = (X; — Bx; X3) /(1 + BX3) 2

and after expressing the 3-D motion in terms of the instantaneous rectilinear and angular
velocities, T = (11,1, T3) and2 = (24, 22, Q3) respectively, ie

X=QxX+T (3)

we arrive at an alternate form of the basic motion equations:
T, = QQB.’L'% — W prixe — Q32 + (T1 — Bz T3 + QQX3)/(1 + BX3) (4)
iy = —OBa5 + Wafrixs + Q3xy + (T — BTy — Q1 X3)/(1+ X3)  (5)

Note that because of the difference in origin, these equations differ from those for the
usual camera model [7] in that depth and angular velocity are no longer decoupled.

The structure model is based on a local planar approximatid\?i,c Ilenotes the unit
normal of a surface at a poid,,, then combining the equation of the tangent plane, ie

Npi X1 4 NiaXo + N3 X3 = Dy, (6)

with the projection model in egn (1), we can approximate the variation in depth about the
projected poink;, as

Dy, — Nz — Nyaa
B(Ngiz1 + Niaa) + Nis

whereD;, = X;..N}, is the perpendicular distance of the surface point from the origin as
shown in Fig. 1. Replacing; with this expression in equations (4) and (5) then gives

a non-linear expression for the motion field abgutin terms of the spatial coordinates,

3-D motion, surface normal and focal length. Denoting this expressien by), wherek
indicates the dependence on the local planar structure, we can now obtain a six parameter
affine approximation to the motion field by linearising about the projection c&nptrie

(7)

ap(x) ~

X & Ve (Xg) + Vv (Xe)(x — Xg) (8)

whereVvy(x) is the Jacobian of,(x). Note that the affine parameters are defined in
terms of a non-linear function of the 3-D parameters. It is measurements of these affine
parameters that we use as the data in the estimation process described in the next section.






BMVC2000

3 Recursive Estimation

We assume that in an image sequence we can idefitifgffine patches’ corresponding
to a single surface moving with rigid motion, where the 6 affine parameters define an
approximation to the local 2-D motion field within each patch. Moreover, that we have
tracked the patches over time as the surface moves. Given these measurements, we wish
to use equation (8) to obtain estimates of the instantaneous 3-D motion of the surface and
the 3-D position and surface normal associated with each patch.

This is done using an extended Kalman filter [3, 2, 12]. The state vector consists of
the 6 motion parameters, the inverse focal length3dstructure parameters, ie

s:(Tl,T2,BT3,Q,B,N07'"7NK71) (9)

where R R R X X
Ny = (Nk1/Ngs, Ng1/Nis, Dy, / Nis) (10)

We use the produgtT; to reflect the dependence on focal length of the sensitivity to
motion along the optical axis [2] and normalise the structure parametefgpgwhich
will always be significantly greater than zero for visible patches) to minimise the number
of state variables by eliminating the redundant degree of freedom. The measurement
vector contains thé K affine parameters and hence the measuremgintat time¢ is
related to the state(t) by

a(t) = h(s(t)) + w(t) (11)

wherew(t) is zero mean with covariand@. The non-linear observation mode(s) is
defined by equation (8), ie for< k < K

heet1(s) = 521 heega(s) = 521 heys(s) = vk

12
heia(s) = 322 herya(s) = 522 hekie(s) = vk (12)
wherevy; anddvy;/dx; are evaluated aty,.
The state dynamics for the filter are defined by the equation
s(t+ 1) = f(s(t)) + e(t) (13)

wheree(t) is zero mean with covarianeg andf(s) is the state transition function. No

prior knowledge of the dynamics is assumed and hence we use an identity transition for
the motion and focal length, i¢;(s) = s; for 1 < i < 7. The motion states then
define the evolution of the normals and depths as derived by Murray and Shapiro [12].
Details of this are not repeated here; it suffices to note that it yields a non-linear state
transition in the state variables. Recursive estimation of the state then proceeds as for a
standard EKF [3], with the main complications being the need to compute the Jacobians
of the measurement and state model§/leandVf£, and to determine suitable values for

the model covariance@ and R. Although the former are somewhat involved, they are
readily obtained using a mathematical package such as Maple. The resulting filter does
not require excessive computation, the main part being the inversicgvote6 K’ matrix,

and hence, since the system is overdeterminedifor 3, real-time implementation

is possible on a high-performance workstation. The model covariances were arrived at
through empirical means using standard EKF design procedures [3].
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4 Experiments
4.1 Point Data Sets

To ensure the EKF was working correctly, we first tested the estimation process using
synthetic point data. This consisted of clusters of 3-D points on a moving sphere projected
onto the image plane of a stationary camera. We used 8 clusters and the surface was
translated along all three axes while also rotating about both: thied y axes using a
sinusoidal variation (with respect to the camera reference frame). The focal length was
set to 1.0 and all points were visible over all frames usinggafield of view. Each
cluster occupied approximatety5° corresponding td 1% of the image plane. Affine

flow parameters relating corresponding clusters were then obtained for each ‘frame’ using
a standard least-squares fit, ie denotingithgorojected point of théth cluster at time

by x;(t), the flow parameters are given by thex 2 matrix A (¢) and the2 x 1 vector

by (t) which minimise

N—-1
er(t) = Z Vi (8) — Ak (8)xi (£) — i (1) (14)

wherevy; (t) = xx;(t + 1) — x;(t) denotes the motion of thigh point at timet. These
were then used to fill the measurement vector for the EKF, ie from eqns (11) and (12)

Zok1(t) = Ap11(t)  Zoryo(t) = Ap12(t)  2zer4s5(t) = bra(t)

(15)
Zek+3(t) = Aro1(t)  zerya(t) = Ar22(t)  2er46(t) = bra(t)

In the experiments, we added Gaussian noise to each of the parameters, and Figure 2
shows the variation of the 6 noisy measurements over time for one of the clusters where
the noise standard deviation for each parameter was set to approximately 10% of its max-
imum (absolute) value. For these measurements, the evolution of the true and estimated
3-D parameters over 200 frames is shown in Fig. 3, where the structure is shown as the
slanta and tilt 7 of the surface normal and the depth Note that the motion and in-

verse focal lengths converge rapidly, whilst the structure converges within 100 frames
(the translations and depths converge to within a common scale factor). Convergence is
rapid for all the states when uncorrupted measurements are used.

4.2 Texture Mapped Surfaces

To test the estimator using measurements obtained from an image sequence we first syn-
thesised 3-D scenes consisting of textured surfaces moving with respect to a stationary
camera. The geometry was similar to that used in the first experiment and the surfaces
were translated in they-plane and rotated about the three axes. We experimented with
the three surfaces shown in Fig. 4 - a plane (top), a Gaussian (middle) and a saddle type
surface (bottom) - and texture mapped a tree bark image onto each to generate image se-
guences consisting of frames of sz x 256 pixels. Sixteer82 x 32 pixel regions were

then tracked through each sequence by evolving Gaussian windows according to affine
flow parameters computed within each region using a weighted least-squares fit over an
optical flow field. The optical flow was computed using the Lucas and Kanade algorithm
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Figure 2: Noisy affine flow parameters for a cluster used in the point data experiment.
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Figure 3: Motion, inverse focal length and structure estimates compared with the known

groundtruth (dark lines) for the point data experiment.

[8]. The use of Gaussian windows was deliberate - they are closed under affine trans-
formation and hence represent the evolution of the projected affine patches [17]. Fig. 4
shows the structure estimates from the filter overlaid on the corresponding frames, where
the depths and surface normals are represented by perspective projections of oriented
‘platelets’ with needles indicating the normal direction. The top left image shows the ini-
tial state (normals pointing towards the camera and arbitrary depth values) and the central
and right columns show the state of the platelets at frames further on in the sequence.
The filter captures the surface structure well in each case, showing clearly the variation in
depth and surface normal (this is better appreciated when viewing the sequences). Motion
and inverse focal length estimates also converge quickly as shown in Fig. 5.
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Figure 4: Texture mapped surfaces with overlaid ‘platelets’ indicating the estimated sur-
face normals and depths.

4.3 Basket Sequence

The estimator was also tested on areal image sequence of an upturned basket being rotated
on an office chair in front of a stationary video camera. Four frames from the sequence are
shownin Fig. 7. Twenty regions were selected by hand and then tracked over the sequence
as in the previous experiment. The computed affine flow parameters for one of the regions
are shown in Fig. 6. Fig. 7 shows the initial structure state (top left) with normals pointing
towards the camera and equal depths, and the evolved structure for frames further on in the
sequence. In this experiment we iterated the filter three times (forwards, backwards and
forwards through the sequence) to remove the initial transient estimates. Again, the filter
clearly captures the surface structure. As shown in Fig. 8, the motion was predominantly
cyclic translation inX and rotations about the andZ axes. Note also the convergence

of the inverse focal length to a steady value of around 0.2.
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Figure 5: Motion and inverse focal length estimates compared with the known groundtruth
(dark lines) for the texture mapped plane.
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Figure 6: Affine flow parameters computed for one of the regions in the basket sequence

5 Conclusions

This work has demonstrated that affine flow parameters can be used successfully to recov-
er 3-D structure and motion, giving the potential for a denser structure description via the
surface normals than available from a feature based approach, whilst avoiding the high
computational demands of an optical flow scheme. The method performed well when the
affine model provided a good approximation of the local motion fields (particularly for

BMVC2000

near-view textured surfaces), even when the measurements contained significant amounts

of noise. Moreover, its ability to recover stable estimates of the focal length was encour-
aging and appears to provide a robust method for obtaining metric estimates without the
need for pre-calibration.

We are currently carrying out further investigation of the filter performance, partic-
ularly its convergence and accuracy properties given known (or estimated) uncertainty
in the affine flow measurements. A key issue for its use in practice will clearly be an
effective method for first identifying and then tracking appropriate sets of ‘affine patch-
es’ corresponding to a single rigid surface in a sequence. A method for doing this was
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Figure 7: Frames and estimated platelets for the basket sequence.
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Figure 8: Motion and inverse focal length estimates obtained for the basket sequence.

described in [17] and we are now developing an integrated scheme which combines the
tracking with the 3-D estimation. We are also looking at ways in which the method can
be combined with a suitable feature based technique in order to provide a hybrid scheme
which can adapt to the characteristics of the scene being viewed, recovering surface nor-
mal information when and if affine flow measurements become available.






Acknowledgement

This work was supported by the UK EPSRC. Many thanks to Stefaigéirfor discus-
sions and help with generating and capturing the sequences.

References

(1]

G. Adiv. Determining three-dimensional motion and structure from optical flow generated
by several moving objectdEEE Trans on Patt Analysis and Machine Intél(4):384—-401,
1985.

[2] A. Azarbayejani and A. P. Pentland. Recursive estimation of motion, structure and focal

length. IEEE Trans on Patt Analysis and Machine Intdll7(6):562-575, 1995.

[3] J.V. Candy.Signal Processing: The Model Based ApproakttGraw-Hill, Singapore, 1986.

(4]
(5]

D. J. Heeger and A. D. Jepson. Subspace methods for recovering rigid motion i: algorithm
and implementationint Journal of Computer Visiarv(2):95-117, 1992.

T. S. Huang and A. Netravali. Motion and structure from feature correspondences: a review.
Proc IEEE 82(2):252-268, 1994.

[6] A. Jebara, T Azarbayejani and A. P. Pentland. 3d structure from 2d mot®BE Signal

(7]
(8]
9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

[18]

Processing Magazind 6(3):66—84, 1999.

H. C. Longuet-Higgins and K. Prazdny. The interpretation of a moving retinal imRgec

Royal Society, LondoB-208:385-397, 1980.

B. D. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. IrProc Int Joint Conf on Artificial Intelligencepages 674—679, 1981.

F. G. Meyer. Time-to-collision from first-order models of the motion fielBEE Trans on
Robotics and Automatioi0(6):792—798, 1994.

F. G. Meyer and P. Bouthemy. Region-based tracking using affine motion models in long
range sequence€VGIP: Image Understanding0(2):119-140, 1994.

R. Mohr and B. Triggs. Projective geometry for image analysis. Tutorial, International Sym-
posium of Photogrammetry and Remote Sensing, Vienna, 1996.

D. W. Murray and L. S. Shapiro. Dynamic updating of planar structure and motion: the case
of constant motionComputer Vision and Image Understandig@(1):169—-181, 1996.

S. Negahdaripour and S. Lee. Motion recovery from image sequences using only 1st order
optical-flow information.Int Journal of Computer Visiqro(3):163—-184, 1992.

R. Pollefeys, M Koch and L. Van Gool. Self-calibration and metric reconstruction in spite of
varying and unknown internal camera parametéms.Journal of Computer Visiqr32(1):7—

25, 1999.

M. Subbarao and A. M. Waxman. Closed form solutions to image flow equations for planar
surfaces in motionCVGIP, 36:208-228, 1986.

J. Y. A. Wang and E. H. Adelson. Representing moving images with layBISE Trans on
Image Processing3(5):625—-638, 1994.

R. Wilson, P. Meulemans, A. Calway, and S. Kruger. Image sequence analysis and segmen-
tation using g-blobs. IProc IEEE Int Conf on Image Processingpges 483-487, 1998.

Y. Xiong and S. A. Schafer. Dense structure from a dense optical flow sequ€nogputer
Vision and Image Understandin§9(2):222—245, 1998.

BMVC2000






