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Abstract

When attempting to code faces for modeling or recognition, estimates of di-
mensions are typically obtained from an ensemble. These tend to be signif-
icantly sub-optimal. Firstly, ensembles are rarely balanced with regard to
identity and expression. This can be overcome by dividing the ensemble by
type of variation and rotating sub-spaces relative to one another. Secondly,
each face contains both predictable and non-predictable qualities; only the
predictable aspects are useful for defining coding systems for other faces.
Variance-based methods of defining codes (PCA) will provide eigenvectors
which are themselves potential faces. Predictable aspects will induce eigen-
vectors with comparable levels of spatial redundancy to the ensemble. We
show that this gives relatively short and consistent codes, and allows fast and
accurate fitting of codes to faces.

1 Introduction

A major objective with any face-processing system is to be able to code faces regard-
less of their relationship with our specific knowledge of faces, the ensemble. If this is
possible, we can be confident that variation in codes between or within faces will reflect
real differences, and these variations will be optimally consistent across faces. The most
obvious method of improving the generality of codes is to increase the size of the ensem-
ble. However, this usually has an effect of decreasing the codes’ specificity by increasing
the number of dimensions. Further, if the psychology of facial variation is examined, it
appears to divide into two aspects :general familiarityinformation, which is predictable
from other faces andmemorabilityinformation, which is not predictable [1].

Memorability information reflects small, discrete, easily verbalised features, for ex-
ample skin blemishes or warts. Such information has essentially infinite dimensionality
and will exhibit fortuitous correlations between faces. Thus it can disproportionately
reduce both the specificity and the generality of a set of codes. Within a Principal Com-
ponents setting, familiarity weighs on the early, high variance eigenvectors, while mem-
orability correlates with the later, low-variance eigenvectors [2]. However, although this
simple variance division does not offer an obvious cut-off point, the predictability of
the general familiarity codes suggests a method. Given a full-reconstruction constraint
(present when using Principal Components), they must themselves be acceptable as faces;
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conversely the specific memorability codes must not be. The localized nature of the mem-
orability information implies that the low-variance codes will be less spatially predictable
than real faces. We thus use grey-level based codes, measuring the spatial redundancy in
small, spatially-adjacent sub-samples. Probabilistic methods of distinguishing these from
the samples found in the real faces of the ensemble are developed, and we show that this
yields consistent estimates of the number of parameters, and allows the construction of
both general and specific facial codes.

An additional problem is the selection of images used in the ensemble. Typically, it
is impossible to obtain a completely balanced set of all the people in the ensemble in all
possible pose, expression and lighting combinations. This is especially true if we wish
to have average coverage of the identity space. However, if we can divide our complete
ensemble into subsets which vary predominately on individual types of variation, we can
overcome this problem by adopting a recoding strategy. This allows the construction of
optimal non-orthogonal sub-spaces, which can then be combined with one another [5] to
form a single, unbiased set of dimensions.

2 Background

Facial coding requires the approximation of a manifold, or high dimensional surface, on
which any face can be said to lie. This allows accurate coding, recognition and repro-
duction of previously unseen examples. A number of previous studies [3, 4, 6] have
suggested that using ashape-freecoding provides a ready means of doing this, at least the
when the range of pose-angle is relatively small, perhaps�20o [7]. Here, the correspon-
dence problem between faces is first solved by finding a pre-selected set of distinctive
points (corners of eyes or mouths, for example) which are present in all faces. This is typ-
ically performed by hand during training. Those pixels thus defined as being part of the
face can be warped to a standard shape by standard grey-level interpolation techniques,
ensuring that the image-wise and face-wise coordinates of a given image are equivalent.
If a rigid transformation to remove scale, location and orientation effects is performed on
the point-locations, they can then be treated in the same way as the grey-levels, as again
identical values for corresponding points on different faces will have the same meaning.

Although these operations will linearise the space, allowing interpolation between
pairs of faces, they do not give an estimate of the dimensions. Thus, the acceptability as a
face of an object cannot be measured; this reduces recognition[3]. In addition, redundan-
cies between feature-point location and grey-level values cannot be described.

Both these problems can be addressed by Principal Components Analysis. Given a
set ofN vectorsqi (either the pixel grey-levels, or the feature-point locations) sampled
from the images, the covariance matrixC of the images is calculated,

C =
1

N

NX
i=1

(qi � �q)(qi � �q)
T ; (1)

and orthogonal unit eigenvectors� and a vector of eigenvalues� are extracted fromC.
This allows an estimate of the dimensions and range of the face-space. The weightswi

of a face can then be found,
wi = �T (qi � �q) (2)






and the projected versionq0i of the face,

q0i = �wi + �q: (3)

Since the columns of the matrix� are orthogonal (and typically ordered by declining
magnitude of�j ) the similarity betweenqi and the projected version,q0i can be controlled
by truncating�, and with itw.

Redundancies between shape and grey-levels are removed by performing separate
PCAs upon the shape and grey-levels, before the weights of the ensemble are combined
to form single vectors on which second PCA is performed [4]. This ‘appearance model’
allows the description of the face in terms of true, expected variation – the distortions
needed to move from one to another [8]. An example of the first few dimensions of such
a model is provided in Figure 1. However, it will potentially code the entire variation
between the faces which form our ensemble, including both the general and specific vari-
ance. The followings studies aim to exclude the specific variance, leading to a smaller
and more useful model.

3 Appearance Model Construction

For testing purposes, an ensemble of 314 facial images was used. This comprised 218
different individuals (the image to individual mapping was known), and was sub-divided
into groups varying on facial pose, expression and lighting. Males and females were
present in approximately equal proportions, and the individuals were drawn from a range
of ages and ethnic groups. All the images had a uniform set of 68 landmarks found
manually. A triangulation was applied to the points, bilinear interpolation used to warp
the images to a standard shape and size which would yield a fixed number of pixels, which
can be varied at the experimenter’s will.

Since the images were gathered with a variety of cameras, it was necessary to nor-
malise the lighting levels. The shape-free grey level patchgi was sampled from theith
shape-normalised image. To minimise the effect of global lighting variation, this patch
was normalised at each pixelj to give

g0ij = (gij � �j)=�j (4)

where�j ,�j are the mean and standard deviation for pixelj across the ensemble.

4 Dimensionality reduction

The number of parameters was controlled separately for the shape and region domains,
before combining to form an appearance model describing all the relevant variance.

4.1 Shape approximation

In Equation 2,qi hasn members, the x- and y-coordinates of the feature points, whilewi

is a vector oft shape parameters. The variance of thejth parameter across the training
set,wj , is given by the�j . The number of eigenvectors used is chosen either to explain a
given proportion of the variance in the aligned data (e.g. 98%), or, more appropriately, so






that the model can approximate the original data to a given accuracy. The smallest model
giving an median root mean square error,

Et = Hn
i=1

0
@
vuut1

p

pX
j=1

(qij � q0tij)
2

1
A (5)

of less than 1 pixel was selected. TheH operator applies a fully-converged robust Huber
M-estimator of the central tendency of the data. A robust estimate of central tendency
was chosen to help exclude observations which were highly abnormal (and thus needed
extra dimensions to allow modeling) either due to inaccuracies in markup, or memorable
face shape.

A value of 1 pixel (in the un-aligned data) is chosen as this is the real maximum ac-
curacy; ignoring experimenter error, there is maximum difference of 1 pixel between the
‘real’ and found locations. In practice, the ensemble requires 38 eigenvectors. Given the
grey-level based nature of most memorability information, further reduction in dimen-
sionality was not considered necessary.

Figure 1: The first two dimensions of the
face-space in the appearance model. From
the left,�2s:d:, the mean+2s:d:.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1 10 100

Lo
ga

rit
hm

 o
f l

oc
al

 e
ig

en
va

lu
e

Logarithm of local eigenvalue rank

Analysis of ensemble
Analysis of 1st eigenvector

Analysis of 300th eigenvector

Figure 2: Eigenvalues of local analyses of
the ensemble and the first and 300th eigen-
vectors.

4.2 Region approximation

The local consistency of the region eigenvectors was measured. Small-scale, memorability-
type variations on faces should be significantly less predictable from adjacent pixels than
large-scale familiarity-type variations. This should be measurable from the eigenvectors,
since they will have constant sums of squares, irrespective of the variance associated with
them. One possible method is to perform a local PCA on the eigenvector.

The eigenvectors were converted into an image of the shape implied by the mean of
the shape-model, just as an approximated image must be before distortion to the final
shape. This formed an irregularly shaped patch, so a suitably sized border was added
around it. All the pixel-values in the border were zero, so the mean and sum of squares
were not affected. Square samples were then taken,sampling each pixel within the face
an equal number of times. The samples are odd-numbered squares, i.e.3�3, 5�5, 7�7
and so on.






A PCA was then performed on the resultant set of samples. In effect, this produced
a local Fourier decomposition of the eigenvector (the new,local eigenvectors) and a set
of eigenvalues. The sum of the eigenvalues equals the total variance in the ensemble.
This will be constant across the region eigenvectors In addition, their rate of decline in
magnitude will depend upon the redundancy of the samples from which they are drawn.
A perfectly random eigenvector, where there is no predictability between adjacent pix-
els will have a set of constant eigenvalues. Conversely, an entirely predictable region
eigenvector (say, a constant brightness-gradient from left to right) will generate a single
non-zero eigenvalue.

The requirement is that we exclude any region eigenvectors which are too noisy, and
so do not resemble faces sufficiently. This was assessed by treating the ensemble images
as if they were eigenvectors themselves. Each image was sampled to become shape-free,
and the grey-levels normalised using Equation 4. The difference from the mean grey-level
image was then found and this difference image further normalised,

g0ij =
gij � �giqPn

j=1(gij � �gi)2
; (6)

setting the mean to zero and the sum for squares to one. A local analysis was then per-
formed across each of the ensemble faces, and the mean�e and variance� of the sets of
eigenvalues found. With the eigenvalue curves of the first and 300th region eigenvectors
of the ensemble, the means are shown in Figure 2. A9� 9 pixel window was used for the
analysis.

The Mahalanobis distance between the eigenvalues derived from the ensemble and
each set derived from an eigenvector can be calculated,

d2i =
nX

j=1

(�ej �wij)
2

�j
; (7)

with d2i distributed as�2 on n � 1 degrees of freedom, as in this case,�e andwi sum
to the same value. Thus the probability that a given eigenvector could be a true face
can be calculated. Since we are only interested in excluding eigenvectors which are less
predictable than the ensemble, the value of the first eigenvalue for each eigenvector was
examined. If this was higher than the first eigenvalue derived from the ensemble, the
probability of the eigenvector being acceptable was assumed to be one. This required that
di be measured onn� 2 degrees of freedom.

5 Sub-space Calculation

The aim of the recoding algorithm is to take account of the multiple possible explanations
of the coding of a given face. Considering the combination of different sub-spaces, ifns
are used, each described by eigenvectors�(j) with the associated eigenvalues�(j), for a
given faceq the projection out of the combined subspaces is given by

q0 =

nsX
j=1

�(j)w(j) + �q: (8)






Assuming, as is reasonable in this case, that the different� are not orthogonal and have
more dimensions than are required to span the underlying space, there is a many-to-one
relationship betweenw andq0 and constraints must be imposed to ensure consistency
of coding. One obvious constraint, used here, is thatw be the most probable of the set
producingq0. This implies that

E =

nsX
j=1

NjX
i=1

(w
(j)
i )2

�
(j)
i

(9)

be minimised. Thus ifM is the matrix formed by concatenating�(j=1;2:::) andD is the
diagonal matrix of�(j=1;2:::),

w = (DMTM+ I)�1DMT (q� �q) (10)

and this also gives a projected version of the face

q0 = (DMT )�1(DMTM+ I)w + �q (11)

with wl = 0 for those subspaces not required in the new version.
The first stage was to obtain the appearance-model weights (using Equation 2) for

each image used to build the truncated model. Separate PCAs were then performed upon
the sets of the weights. The covariance matrices for the identity and lighting subspaces
were calculated using Equation 1 while the pose and expression subspaces used

CW =
1

nonp

npX
i=1

noX
k=1

(qki � �qi)(qki � �qi)
T (12)

whereno is the number of observations per individual,np is the number of individuals,
and�qi is the mean of individuali. Although all the eigenvectors implied by the identity,
lighting and expression sets were used, only the two most variable from the pose set were
extracted.

The eigenvectors were combined to formM and Equations 10 and 11 used to give
the projectionq0j of faceq for subspacej. This procedure looses useful variation. For
example, the identity component of the expression and pose images was unlikely to be
coded precisely by the identity set alone. Thus the full projectionq0 was calculated, and
recoded imagerj included an apportioned error component:

rj = q0j +
(q0 � q)

PNj

k=1 �
(j)
kPns

j=1

PNj

k=1 �
(j)
k

: (13)

This yielded four ensembles, each of 314 images. A further four PCAs were per-
formed on the recoded ensembles (all using Equation 1), extracting the same number of
components as on the previous PCA for the lighting, pose and expression subspaces, plus
all the non-zero components for the identity sub-space. Combined, these formed a new
estimate ofM, and Equations 10, 11 and 13 were applied to give a third-level estimate
and so forth. Convergence was assessed by measuring the Mahalanobis distance between
the projections of the images the various spaces. The algorithm continued until succes-
sive iterations produced the same pattern of distances; in practice this was almost always
achieved by the third iteration.






6 Recoded Appearance Model

It is possible to add Principal Component spaces together[5]. This requires the mean of
the space, the eigenvectors, eigenvalues and number of observations used in each of the
spaces to construct a single, combined space which is will span all the examples in the sub-
spaces, and will give proper emphasis to those spaces (most notably lighting and pose)
which were under-represented in the complete ensemble. However, this recoding method
will still tend to produce under-estimates of the variances of the under-represented spaces,
as the majority of images will be unusually clustered around the mean. Thus, rather than
the eigenvectors themselves, we use estimates of variance derived from the final recoded
parameters of the sub-sets of images which we used to construct the original estimates of
spaces. The images were sorted into the appropriate groups and Equations 10 and 11 used
to give normalised versions. Equation 2, using the same space, then gave the weights and
the variance for each eigenvalue was found.

It would have been possible to control the appearance model indirectly, through the
space, but for ease of integration it was considered necessary to transform the recoded
space into an appearance model. It was possible to calculate the eigenvectors for the new
appearance model

�(n) = (�T
(a)�

T
(r))

T (14)

and then use the eigenvalues for the recoded space and mean of the old appearance model
directly on the new appearance model eigenvectors. No alterations at the shape and texture
level were necessary. The first two dimensions of this new recoded space are shown in
Figure 3, they show a reduced effect of identity and expression and an increased effect of
pose.

7 Results

An effective method of controlling the dimensions of an appearance model should be
relatively unaffected by parameter variation, and should allow more accurate searching
for faces than an un-controlled appearance model.

7.1 Effects of sub-sampling scheme

There are two major parameters which need to be determined for this algorithm; the size
of the sampling window, and the minimum acceptable probability that a region eigenvec-
tor has less structure than the ensemble images. Taking the region eigenvectors derived
from the full ensemble, the probability that each eigenvector was distinguishable from the
ensemble was calculated. The size of the local sample was varied, from a3 � 3 pixel
square, up to9 � 9 pixels. Since the probabilities do not rise very smoothly, a criterion
probability,Pc was selected, and all the eigenvectors up to the highest ranked one with
P � Pc were accepted. The results are shown in Figure 4. As can be seen, the5 � 5,
7 � 7 and9 � 9 samples are almost identical, and the number of eigenvectors accepted
are steady for a range of values ofPc in the 0.9 – 0.999 range, where a criterion is likely
to be placed.

On this basis, the7 � 7 pixel square was chosen, as was a maximum allowed proba-
bility of difference from the ensemble ofPc = 0:99. This yielded 89 eigenvectors; setting
Pc = 0:95 would yield 86 eigenvectors, andPc = 0:999, yields 99 eigenvectors.






7.2 Effects of ensemble and image size

The analyses with the parameters derived above were run on a range of ensembles of dif-
ferent sizes. All were quasi-random sub-sets of an enlarged ensemble, with 430 images.
When the shape-free face is constructed, a decision must be made about the number of
pixels to include in the vectors which are submitted to PCA. Thus the image-size is con-
trolled, sampling by bilinear interpolation from the original, un-processed image. A set
of models at different resolutions can be built; the lower dimensionality to be expected
from the smaller models can be made use of when searching images for faces.

The results of this test are shown in Figure 5, showing the number of region eigen-
vectors accepted. There is relatively little redundancy between the shape and the region
parameters; the number of appearance model parameters for a given ensemble–image-size
combination can be obtained by adding the number of parameters for that ensemble.

Figure 3: The first two dimensions of the
face-space as defined by the recoded ap-
pearance model.
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Figure 4: Effects of varying criterion prob-
ability on the number of region eigenvec-
tors accepted, for a range of window-sizes.

Clearly, both the number of faces in the ensemble, and the number of pixels in each
face affect the number of dimensions extracted. Increasing either will increase the vari-
ance to be explained and the ways the familiarity information in the ensemble faces may
vary. However, the rate of increase declines with increasing number of faces in the ensem-
ble, suggesting an asymptotic value of approximately 105 texture eigenvectors for 6000
pixels, and so about 140 appearance model parameters. This is considerably less than
the figure suggested elsewhere [10], but does partially reflect the use of the appearance
model. It should be noted however, that the 625 pixel line is actually higher than that
for 6000 pixels. This reflects the major limitation of this method, that if the number of
images and/or pixels is sufficiently small, all the texture eigenvectors will be of similar
redundancy, and so cannot be discriminated.

7.3 Approximating Novel Faces

The aim of the recoding algorithm is to simulate the effects of using a larger more rep-
resentative ensemble. In practice, this will take the form of a rotation within the larger
vector-space in which the face-space is embedded, but should not involve a translation
or alteration in the number of dimensions used. Thus, while the position of the face in
the larger space should not change relative to the space mean, if the space is better able






to represent non-ensemble faces, they should be closer to the axes of the space. This
can be observed by taking the absolute sum of appearance model weights; on average
non-ensemble faces should have higher sums on the recoded space than on the original
space.

A pair of appearance models were trained from the ensemble, using 6000 pixels per
face. The variances were measured for a set of 157 images of people not in the ensemble,
showing notable pose and expressive changes. The results are shown in Figure 6, where
the x-axis is the sum of squares on the truncated, but un-recoded space, while the y-axis
is the change in absolute sum for each image when the space is rotated. The mean change
in sum is 0.1119; since positive values imply smaller absolute sums, the axes are moving
closer to the non-ensemble images.
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Figure 5: Effects of variation of the en-
semble and image size on the number of
eigenvectors extracted.

0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

1

R
ec

od
ed

 −
−

 n
on

−
re

co
de

d 
pa

ra
m

et
er

 a
bs

ol
ut

e 
su

m
 d

iff
er

en
ce

Non−recoded parameter sum of squares

Figure 6: Effects of recoding on eigenvec-
tor parameter variation.

7.4 Fitting to Faces

Given an appearance model, it is possible to automatically find parameters which describe
a face, without needing to first obtain a set of correspondence points. An Active Appear-
ance Model [9] can be trained on the basis of coding errors, predicting the change in the
appearance-model weights (and the pose and grey-level transformation) necessary to min-
imize the difference between a projected faceq0 and the actual image. Active appearance
models were trained from each of the appearance models, and the accuracy with which
they converged on the test-set measured. Since the actual point locations were known,
these were used to supply starting positions, with the model being displaced known dis-
tances around this and allowed to converge.

To judge to efficiency of searching, the mean error between know and located grey-
levels taken. While the mean error for the recoded model was 0.00804 pixels, that for
the un-recoded model was 0.00578. It proved impossible to build an untruncated version
of the active appearance model; the number of displacements necessary to estimate the
weight-image relationship was too great.






8 Conclusions

Once faces have been accurately coded, the major problem is to ensure that only a useful
sub-set of the codes are used for manipulations or measurement. A given set of codes will
respond to both generic variation, useful when considering faces not in the ensemble, and
variation specific to the ensemble. Only the former is truly ‘facial’.

We have shown that this problem can be overcome by measuring the local structures
in the eigenvectors, and comparing these with the ensemble. This yields smaller models,
which are relatively independent of both the parameters of the local analysis, and the
ensemble size. This then allows searching of images for novel faces. The relationship
between the number of faces in the ensemble and the number of eigenvectors in the model
suggests that, for a given image-resolution, there are a fixed number of ‘real’ modes of
facial variation. Inadequacies in the ensemble can be overcome by modeling different
causes of variation between and within faces, if we can classify the variation in a sub-
ensemble. This makes the model more applicable to non-ensemble images, but causes
slightly less accurate searching.
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