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Abstract

This paper describes building models which represent the appearance
of an object (in particular, a face) as seen from two or more di�erent
viewpoints simultaneously. A small number of 2D linear statistical
models are suÆcient to capture the shape and appearance of a face
from a wide range of viewpoints. Given multiple images of the same
face we can learn a coupled model describing the relationship between
the frontal appearance and the pro�le of a face. This relationship can
be used to predict new views of a face seen from one view. Such a
coupled model can be used to constrain search algorithms which seek
to locate a face in multiple views simultaneously, leading to more robust
results than searching each view independently.

1 Introduction

This paper describes building coupled models which represent the appearance of a
face as seen from two di�erent view-points. The majority of work on face tracking
and recognition assumes near fronto-parallel views, and tends to break down when
presented with large rotations or pro�le views. Three general approaches have been
used to deal with this; a) use a full 3D model [18, 4, 13], b) introduce non-linearities
into a 2D model [6, 14, 16] and c) use a set of models to represent appearance
from di�erent view-points [12, 2]. In this paper we explore the last approach,
using statistical models of shape and appearance to represent the variations in
appearance from a particular view-point and the correlations between models of
di�erent view-points.

One potential application is in face recognition systems. If a sytem relies on
a single image, it can easily be fooled with a photograph. This can be prevented
either by using sequences, or by using two cameras with a suÆciently di�erent
view-point. The methods described below can be used to determine the expected
relationship between the di�erent views, and should be able to distinguish a pho-
tograph from a true 3D structure.

The appearance models are trained on example images labelled with sets of
landmarks to de�ne the correspondences between images [1]. Lanitis et.al. [9]
showed that a linear model was suÆcient to simulate considerable changes in
viewpoint, as long as all the modelled features (the landmarks) remained visible.
A model trained on near fronto-parallel face images can cope with pose variations
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of up to 45o either side. For much larger angle displacements, some features
become occluded, and the assumptions of the model break down.

It has been demonstrated [2] that to deal with full 180o rotation (from left
pro�le to right pro�le), one needs only 5 models, roughly centred on viewpoints at
-90o,-45o,0o,45o,90o (where 0o corresponds to fronto-parallel). The pairs of models
at �90o (full pro�le) and �45o(half pro�le) are simply re
ections of each other, so
only 3 distinct models are required. These models can be used for estimating head
pose, for tracking faces through wide changes in orientation and for synthesizing
new views of a subject given a single view.

Each model is trained on labelled images of a variety of people with a range of
head orientations, chosen so none of the features for that model become occluded.
The di�erent models use di�erent sets of features (see Figure 2). Each example
view can then be approximated using the appropriate appearance model with
a vector of parameters, c. We can learn the relationship between c and head
orientation, allowing us to both estimate the orientation of any head and to be
able to synthesize a face at any orientation.

There are clearly correlations between the parameters of one view model and
those of a di�erent view model. In order to learn these, we need images taken from
two views simultaneously. For our experiments we achieved this using a judiciously
placed mirror, giving a frontal and a pro�le view (Figure 1).

Figure 1: Using a mirror we capture frontal and pro�le appearance simultaneously

By annotating such images and matching frontal and pro�le models, we obtain
corresponding sets of parameters. These can be analysed to produce a joint model
which controls both frontal and pro�le appearance. Such a joint model can be
used to synthesize new views given a single view. Though this can perhaps be
done most e�ectively with a full 3D model [18], we demonstrate that good results
can be achieved just with a set of 2D models. The joint model can also be used
to constrain an Active Appearance Model search [3, 1], allowing simultaneous
matching of frontal and pro�le models to pairs of images.

In the following we describe the techniques in more detail and give examples
of the models, their ability to synthesize new views and to search unseen images.

2 Background

Statistical models of shape and texture have been widely used for recognition,
tracking and synthesis [7, 9, 3, 17], but have tended to only be used with near
fronto-parallel images.






Moghaddam and Pentland [12] describe using view-based eigenface models to
represent a wide variety of viewpoints. Our work is similar to this, but by including
shape variation (rather than the rigid eigen-patches), we require fewer models and
can obtain better reconstructions with fewer model modes.

Maurer and von der Malsburg [10] demonstrated tracking heads through wide
angles by tracking graphs whose nodes are facial features, located with Gabor jets.
The system is e�ective for tracking, but is not able to synthesize the appearance
of the face being tracked.

Murase and Nayar [6] showed that the projections of multiple views of a rigid
object into an eigenspace fell on a 2D manifold in that space. By modelling this
manifold they could recognise objects from arbitrary views. A similar approach
has been taken by Gong et.al. [15, 8] who use non-linear representations of the pro-
jections into an eigen-face space for tracking and pose estimation, and by Graham
and Allinson [5] who use it for recognition from unfamiliar viewpoints.

Romdhani et.al. [14] have extended the Active Shape Model to deal with full
180o rotation of a face using a non-linear model. However, the non-linearities
mean the method is slow to match to a new image. They have also extended the
AAM [16] using a kernel PCA. A non-linear 2D shape model is combined with a
non-linear texture model on a 3D texture template. The approach is promising,
but considerably more complex than using a small set of linear 2D models.

Vetter [18] has demonstrated how a 3D statistical model of face shape and
texture can be used to generate new views given a single view. The model can
be matched to a new image from more or less any viewpoint using a general
optimisation scheme, though this is slow. Similar work has been described by
Fua and Miccio [4] and Pighin et.al. [13]. By explicitly taking into account the
3D nature of the problem, this approach is likely to yield better reconstructions
than the purely 2D method described below. However, the view based models we
propose could be used to drive the parameters of the 3D head model, speeding up
matching times.

3 View-Based Models of Appearance

An appearance model can represent both the shape and texture variability seen
in a training set. The training set consists of labelled images, where key landmark
points are marked on each example object. The training set is usually labelled
manually, though automatic methods are being developed. For instance, Figure 2
shows examples of labelled images used to train the view-based face models.

Given such a set we can generate a statistical models of shape and texture
variation (see [1, 3] for details). The shape of an object can be represented as
a vector x and the texture (grey-levels or colour values) represented as a vector
g. The appearance model has parameters, c, controlling the shape and texture
according to

x = �x+Qsc

g = �g +Qgc
(1)

where �x is the mean shape, �g the mean texture and Qs,Qg are matrices de-
scribing the modes of variation derived from the training set.






Pro�le Half Pro�le Frontal

Figure 2: Examples from the training sets for the models

We trained three distinct models on data similar to that shown in Figure 2. The
pro�le model was trained on about 450 landmarked images taken of 70 di�erent
individuals from a variety of orientations. The half-pro�le model was trained on
82 images of 15 individual, and the frontal model on about 450 images of 70
individuals.

An example image can be synthesised for a given c by generating a texture
image from the vector g and warping it using the control points described by
x. For instance, Figure 3 shows the e�ects of varying the �rst two appearance
model parameters, c1, c2, of models trained on sets of face images, labelled as
shown in Figure 2. These change both the shape and the texture component of
the synthesised image.

c1 varies �2 s.d.s c2 varies �2 s.d.s

Figure 3: First two modes of the face models (top to bottom: pro�le, half-pro�le
and frontal)






4 Predicting Pose

We assume that the model parameters are related to the viewing angle, �, approx-
imately as

c = c0 + cc cos(�) + cs sin(�) (2)

where c0, cc and cs are vectors estimated from training data. Here we con-
sider only rotation about a vertical axis - head turning. Nodding can be dealt
with in a similar way. We estimate the head orientation in each of our training
examples, �i, accurate to about �10

o. For each such image we �nd the best �tting
model parameters, ci. We then perform regression between fcig and the vectors
f(1; cos(�i); sin(�i))

0g to learn c0,cc and cs.
Figure 4 shows reconstructions in which the orientation, �, is varied in Equation

2.

-105o -60o -45o

-60o -20o +45o

Figure 4: Rotation modes of three face models

Given a new example with parameters c, we can estimate its orientation as fol-
lows. Let R�1

c be the left pseudo-inverse of the matrix (ccjcs) (thus R
�1

c (ccjcs) =
I2). Let

(xa; ya)
0 = R�1

c (c� c0) (3)

then the best estimate of the orientation is tan�1(ya=xa). Experiments suggest
the estimate is accurate to about �5o[2].

5 Synthesizing Rotation

Given a single view of a new person, we can �nd the best model match and
determine their head orientation. We can then use the best model to synthesize
new views at any orientation that can be represented by the model. If the best
matching parameters are c, we use Equation 3 to estimate the angle, �. Let r be
the residual vector not explained by the rotation model, ie

r = c� (c0 + cc cos(�) + cs sin(�)) (4)






To reconstruct at a new angle, �, we simply use the parameters

c(�) = c0 + cc cos(�) + cs sin(�) + r (5)

For instance, Figure 5 shows �tting a model to a roughly frontal image and
rotating it. The top example uses a new view of someone in the training set. The
lower example is a previously unseen person from the Surrey face database [11].

Original Best Fit (-10o) Rotated to -25o Rotated to +25o

Original Best Fit (-2o) Rotated to -25o Rotated to +25o

Figure 5: By �tting a model we can estimate the orientation, then synthesize new
views

This only allows us to vary the angle in the range de�ned by the current view
model. To generate signi�cantly di�erent views we must learn the relationship
between parameters for one view model and another.

6 Coupled-View Appearance Models

Given enough pairs of images taken from di�erent view points, we can build a
model of the relationship between the model parameters in one view and those in
another. Ideally the images should be taken simultaneously, allowing correllations
between changes in expression to be learnt. We have achieved this using a single
video camera and a mirror (see Figure 1). A looser model can be built from
images taken at di�erent times, assuming a similar expression (typically neutral)
is adopted in both.

Let rij be the residual model parameters for the object in the ith image in
view j, formed from the best �tting parameters by removing the contribution
from the angle model (Equation 4). We form the combined parameter vectors
ji = (rTi1; r

T
i2)

T . We can then perform a principal component analysis on the set
of fjig to obtain the main modes of variation of a combined model,

j = ĵ+Pb (6)






Figure 6 shows the e�ect of varying the �rst four of the parameters controlling
such a model representing both frontal and pro�le face appearance. The modes
mix changes in identity and changes in expression. For instance mode 3 appears
to demonstrate the relationship between frontal and pro�le views during a smile.

Mode 1 (b1 varies �2s.d.s) Mode 2 (b2 varies �2s.d.s)

Mode 3 (b3 varies �2s.d.s) Mode 4 (b4 varies �2s.d.s)

Figure 6: Modes of joint model, controlling frontal and pro�le appearance

6.1 Predicting New Views

We can use the joint model to generate di�erent views of a subject. We �nd the
joint parameters which generate a frontal view best matching the current target,
then use the model to generate the corresponding pro�le view. Figures 7(a,b)
show the actual pro�le and pro�le predicted from a new view of someone in the
training set. In this case the model is able to estimate the expression (a half
smile). Because we only have a limited set of images in which we have non-neutral
expressions, the joint model built with them is not good at generalising to new
people. To deal with this, we built a second joint model, trained on about 100
frontal and pro�le images taken from the Surrey XM2VTS face database [11].
These have neutral expressions, but the image pairs are not taken simultaneously,
and the head orientation can vary signi�cantly. However, the rotation e�ects can
be removed using the approach described above, and the model can be used to
predict unseen views of neutral expressions. Figures 7(c,d) show the actual pro�le
and pro�le predicted from a new person (the frontal image is shown in Figure 5).
With a large enough training set we would be able to deal with both expression
changes and a wide variety of people.






a) Actual pro�le b) Predicted pro�le c) Actual pro�le d) Predicted pro�le

Figure 7: The joint model can be used to predict appearance across views (see Fig
5 for frontal view from which the predictions are made)

7 Coupled Model Matching

Given two di�erent views of a target, and corresponding models, we can exploit
the correlations to improve the robustness of matching algorithms. One approach
would be to modify the Active Appearance Model search algorithm to drive the
parameters, b, of the joint model, together with the current estimates of pose,
texture transformation and 3D orientation parameters. However, the approach we
have implemented is to train two independent AAMs (one for the frontal model,
one for the pro�le), and to run the search in parallel, constraining the parameters
with the joint model at each step. In particular, each iteration of the matching
algorithm proceeds as follows:

� Perform one iteration of the AAM on the frontal model, and one on the pro�le
model, to update the current estimate of c1, c2 and the associated pose and texture
transformation parameters.

� Estimate the relative head orientation with the frontal and pro�le models, �1, �2

� Use Equation 4 to estimate the residuals r1, r2

� Form the combined vector j = (rT1 ; rT2 )
T

� Compute the best joint parameters, b = PT (j� ĵ) and apply limits to taste.

� Compute the revised residuals using (r0T

1 ; r0T

2 )T = ĵ+Pb

� Use Equation 2 to add the e�ect of head orientation back in

Note that this approach makes no assumptions about the exact relative viewing
angles. If appropriate we can learn the relationship between �1 and �2 (�1 =
�2 + const). This could be used as a further constraint. Similarly the relative
positions and scales could be learnt.

To explore whether these constraints actually improve robustness, we per-
formed the following experiment. We manually labelled 50 images (not in the
original training set), then performed multi-resolution search, starting with the
mean model parameters in the correct pose. We ran the experiment twice, once
using the joint model constraints described above, once without any constraints
(treating the two models as completely independent).

Table 1 summarises the results. After each search we measure the RMS distance
between found points and hand labelled points, and the RMS error per pixel






Frontal Model Pro�le Model
Measure Coupled Independent Coupled Independent

RMS Point Error 4:8� 0:5 5:1� 0:5 3:3� 0:15 3:8� 0:3
(pixels)

RMS Texture Error 7:9� 0:25 7:9� 0:25 8:3� 0:25 8:8� 0:4
(grey-levels)

Table 1: Comparison between coupled search and independent search

between the model reconstruction and the image (the intensity values are in the
range [0,255]). The results demonstrates that in this case the use of the constraints
between images improved the performance, but not by a great deal. We would
expect that adding stronger constraints, such as that between the angles �1,�2,
and the relative scales and positions, would lead to further improvements.

8 Discussion and Conclusions

We have demonstrated that a small number of view-based statistical models of
appearance can represent the face from a wide range of viewing angles. Although
we have concentrated on rotation about a vertical axis, rotation about a horizontal
axis (nodding) could easily be included (and probably wouldn't require any extra
models for modest rotations). We have shown that a linear model can represent
the correlations between appearance in two views and that such a model can be
used to predict appearance from new viewpoints given a single image of a person.

Such models can be used to constrain search when matching models to two
views of an object taken simultaneously. We have treated the parameters of each
model as equally important, which in this case is a reasonable approximation.
However, if one view is signi�cantly less useful, if the search algorithm fails in that
view it can have a deleterious e�ect on the match in a di�erent view. We will
consider weighting the parameters to take this into account.

The joint model has implicitly captured the 3D structure of the object. We
could use uncalibrated stereo techniques to determine the actual 3D structure it
represents, though this isn't necessary for many applications.

We anticipate the approach will be useful in many applications, including driv-
ing animated avatars, calculating head pose and making face recognition systems
more invariant to viewing angle.
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