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Abstract

We address the problem of face verification using linear discriminant anal-
ysis and investigate the issue of matching score1. We establish the reason
behind the success of the normalised correlation. The improved understand-
ing about the role of metric then naturally leads to a novel way of measuring
the distance between a probe image and a model. In extensive experimen-
tal studies on the publicly available XM2VTS database2 using the Lausanne
protocol3 we show that the proposed metric is consistently superior to both
the Euclidean distance and normalised correlation matching scores. The ef-
fect of various photometric normalisations4 on the matching scores is also
investigated.

1 Introduction

Linear Discriminant Analysis (LDA) is a powerful tool for pattern recognition in gen-
eral and for face recognition in particular. It was introduced to this application area by
Belhumeur in 1996 [1]. As in early independent comparative studies [6] LDA failed to
deliver its promise as compared with the Principal Component Analysis method [14] a
myriad of alternative techniques have been developed such as the probabilistic model of
Moghaddam [10] and the Support Vector Machine method of Jonsson [3]. However, in a
recent work these initial set backs have been traced to two major reasons and corrective
actions have resulted in LDA’s ranking being reinstated. The first problem which con-
tributed to disappointing results is the numerical instability of LDA in face recognition
applications due to the huge discrepancy between the observation space dimensionality
and the training set size. It has been shown in [5] that this instability can be contained by
a very careful selection of the eigenvalue analysis algorithm.

The second contributing factor is the metric used for defining a matching score in the
LDA space. With a few exceptions [2], commonly the Euclidean metric has been used in
matching [13, 6, 7, 15, 5]. However, in [4] we have shown that the normalised correlation
outperforms the simple Euclidean metric score.

In this paper we revisit the issue of matching score in the LDA space. We establish
the reason behind the success of the normalised correlation. The understanding gained
about the role of metric then naturally leads to a novel way of measuring the distance
between a probe image and a representative of the hypothesised class. In extensive ex-
perimental studies on a publicly available database1 using a standard protocol2 we show
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that the proposed metric is consistently superior to both the Euclidean distance and nor-
malised correlation matching scores. The effect of various photometric normalisations3

on the matching scores is also investigated. Although our discussion focuses on the Per-
sonal Identity Verification problem where the user claims a certain identity which is then
accepted or rejected based on a probe image, we believe that the findings have a much
wider significance.

The paper is organised as follows. In Section 2 the Euclidean metric and normalised
correlation matching scores are analysed and a novel metric introduced. A description
of the experimental setup including the face database used in the study, the experimental
protocol, the image registration strategies and photometric normalisation methods is given
in Section 3. The experimental results are presented in Section 4. Finally a summary of
the main findings and conclusions can be found in Section 5.

2 Distance Metrics

It is well known that the Linear Discriminant Analysis (LDA) provides an effective pat-
tern representation. The reason for this is that LDA, in contrast to Principal Components
(PCA), focuses on discriminatory content rather than on capturing the variability of the
data. Although it is designed to extract first order discriminatory information, in recent
experiments in face based personal identity verification LDA has been shown to outper-
form both linear and nonlinear boundary Support Vector Machines [3]. This may be the
consequence of the sparseness of training data in this particular application where only a
few gallery images are available in the training set for each client. In such situations only
the simplest model, defined in terms of the class mean vector, can be inferred for each
client distribution and this is exactly what LDA is able to exploit.

The LDA projection maximises the ratio of between class and within class scatters. In
the face recognition or face verification application scenarios the within class covariance
matrix is invariably rank deficient, as the number of training images is normally lower than
the dimensionality of the image data. For this reason the Linear Discriminant Analysis
is performed in a PCA subspace associated with the nonzero eigenvalues of the mixture
covariance matrix. In this subspace the LDA axes are known to perform prewhitening of
the within class covariances. In other words, the within class covariance matrix becomes
an identity matrix. The assumption that each client distribution is Gaussian with mean�i
and an identity covariance matrix underlies the LDA approach. Under this assumption the
optimal metric for face image classification is the Euclidean metric. Accordingly, given a
probe image,x, in the LDA space, we can compute a matching scores for the probe and
the i-th client mean as the Euclidean distance between the two vectors, i.e.

sE =
q

(x � �i)T (x� �i) (1)

Whereas in the case of PCA representation, a host of different definitions of matching
scores have been suggested in the literature, almost all the papers on the use of LDA

1The work was partically supported by EU Project Banca.
2This database is known as extended M2VTS database. For details, see

http://www.ee.surrey.ac.uk/Research/VSSP/xm2fdb.
3The experimental protocol for the XM2FDB is called theLausanne protocol. See [9].
4The geometric registration is based on the eye positions obtained in three different ways: manually localised

eye coordinates, perturbed manually localised eye coordinates and automatically localised eye coordinates [8].






invariably deploy the Euclidean metric. However, we question the merit of this commonly
accepted wisdom. There are at least two arguments which raise a doubt about the validity
of this particular score measure. First of all the within class covariance matrix used for
deriving the LDA projection axes is not rank deficient only thanks to the averaging of
the covariance contributions over all the clients. In fact the individual class conditional
covariance matrices are rank deficient. As the number of training images for each client is
very small, the covariance structure is defined only in a low dimensional subspace of the
LDA space. An extrapolation of the structure to the full LDA space is a very dangerous
step to make. It would be much safer to define a matching score in the space spanned by
the client training images only or ideally just in a one-dimensional space.

b) Normalised correlationa) Euclidean metric c) Gradient direction metric
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Figure 1: Metrics for matching score definition

Second, in the personal identity verification scenario we are not simply interested
in the best match but whether the match is good enough. This means that we have to
specify a threshold on the score value which defines whether a claimed identity can be
accepted, even if the corresponding client mean happens to be the best matching model.
The use of the Euclidean distance in this context is marred with difficulties. This can be
seen from Figure 1 in which we illustrate the implications of this metric on verifying the
claim that the probe image belongs to clienti. Although actual impostors are not known
beforehand, in verification all the other clients may be used to model potential impostors.
Suppose that the nearest imposter to clienti is clientj represented by its mean vector�j .
Let us consider two probe vectors for clienti marked in the figure asx1 andx2. Note that
both are closer to�i than to�j but their respective Euclidean distances are very different.
Clearly, a threshold on the score forx2 could be much larger than the threshold used with
probex1. Thus a low fixed threshold will in some cases result in unnecessary rejections
and its relaxation upward in unwanted false acceptances.

In our earlier work [5, 3] we tried to deal with this problem by adopting the normalised
correlation as a matching score function. Note that this measure is not a metric. It has
been used successfully in the PCA space by [11] but its novel use in conjunction with the
LDA representation has been shown to be particularly fruitful. The measure is defined as

sN =
jjxT�ijjp
x
T
x�Ti �i

(2)

The normalised correlation projects the probe vector onto the mean vector of the
claimed client identity, emanating from the origin. It effectively uses just one dimensional






space onto which the test data is projected. The magnitude of projection is normalised by
the length of the mean and probe vectors. In terms of Figure 1, the normalised correla-
tion tessellates the probe space into hyper cones or hyper frustums with the axes passing
through the origin. It is apparent that the normalised correlation score will be insensitive
to probe movements in the radial direction defined by the class mean. However, the score
will drop in value if the probe moves away from this direction angularly. A threshold on
the normalised correlation then defines the acceptance region for each client. In the two
class case of Figure 1 the effective acceptance region for clienti for a given threshold
value is shown by shading. We can see that the measure behaves much better. It reflects
the desired variations in sensitivity as a function of probe location.

Notwithstanding the improvements afforded by the normalised correlation, one can
still voice some misgivings. The main drawback of the normalised correlation is that
the axes of symmetry of the client acceptance cells are constrained to pass the origin.
Inspecting Figure 1, this score will not produce the most effective separation of clienti

from potential imposterj. Considering just a pair of classes (with an identity covariance
matrix), clearly any distance travelled by the probe image in a direction perpendicular
to the line connecting the two mean vectors will not affect the acceptability of the claim.
Only a displacement along the line connecting the two means can qualitatively change the
decision about a claim. In fact in general it is not the direction defined by the difference
of the two means but rather the direction of the gradient of the aposteriori probability
function of clienti. The reason why this direction is decisive is that in high dimensional
spaces practically all the data lies on a surface. It will therefore be unlikely to find many
observations in the direction parallel to the boundary which would adversely interfere
with the decision making process. Our personal identity verification problems falls into
this category.

Thus we wish to measure the distance between a probe imagex and the i-th client
mean vector�i along the direction of the gradient of the i-th class aposteriori probability
functionP (ijx). Using the Bayes formula relating conditional probabilitiesP (ijx) can
be computed as

P (ijx) =
p(xji)P (i)Pm
j=1 p(xjj)P (j)

(3)

wherem denotes the number of clients in the database. In (3)p(xjj) is the j-th client
measurement distribution andP (j) is the prior probability of the probe image belonging
to the j-th client. As mentioned earlier, it is assumed that the client distributionsp(xjj)
are Gaussian with mean�j and an identity covariance matrix, i.e.

p(xjj) = [2�]
�d

2 expf�
1

2
(x� �j)

T (x� �j)g (4)

whered � m denotes the dimensionality of the LDA space. DifferentiatingP (ijx) in (3)
with respect tox we find the gradient directionrP (ijx) as

rP (ijx) =
�P (i)p(xji)

[
Pm

j=1 p(xjj)P (j)]2
[(x� �i)

mX
j=1

p(xjj)P (j)�

mX
j=1

p(xjj)P (j)(x � �j)]

(5)






This can be further simplified as

rP (ijx) = const�
mX
j=1

p(xjj)P (j)(�j � �i) (6)

Note that the gradient direction in (6) will be dominated by the worst case impostors,
that is by impostors close to the locality of the population of the client of the claimed iden-
tity. Moreover, as the length of the gradient vector will have to be normalised anyway the
constant on the rhs of (6) can be ignored. Interestingly, any differences in the respective
prior probabilitiesP (i) andP (j) of the true client and impostors claiming access will not
affect the direction of the gradient as the i-th term of the sum will be zero. In this respect
the priors can also be ignored in the computation of the gradient direction, giving finally
a simple formula

rP (ijx) =

mX

j = 1
j 6= i

p(xjj)(�j � �i) (7)

Now projecting the difference of the probe image and the client mean vector on the
gradient direction (7) will give the proposed optimal matching score

sO =
jj(x� �i)

TrP (ijx)jj

jjrP (ijx)jj
(8)

In the next section the above three scores,sE , sN andsO will be compared experi-
mentally on the XM2VTS database.

3 Experimental Setup

The proposed metric and the associated matching score is experimentally evaluated on a
large publicly available face image database known as the XM2VTS database. XM2VTS
is a multimodal database recorder specifically for assessing the performance of multi-
modal biometric approaches to personal identity verification. In our experiments one of
the standard image subsets have been used for which a standard performance characteri-
sation protocol has been defined so that the results of competing algorithms are directly
comparable.

XM2VTS database contains 295 subjects. The subjects were recorded in four separate
sessions uniformly distributed over a period of 5 months, and within each session two
shots were taken each including frontal-view and rotation sequences. In the frontal-view
sequence the subjects read a specific text (providing synchronised image and speech data),
and in the rotation sequence the head is moved vertically and horizontally in order to
capture different views of the anterior part of the head and to provide information useful
for 3D surface modelling of the head. Details of this database can be found in [9] or
http://www.ee.surrey.ac.uk/Research/VSSP/xm2fdb.html.

The experimental protocol known as the Lausanne evaluation protocol divides the
database into 200 clients and 95 impostors. For each client/imposter one frame per shot
per session is selected from images of frontal or near frontal views, thus giving 8 images
per subject in total. These sets are further divided into training, evaluation and test sets to






create two distinct configurations of the data. In our experiments we used only Configura-
tion I which is known to be more demanding. The set of impostors is split into two subsets
so that the data used for testing is completely independent from that used for finding the
LDA axes and the matching score thresholds. The performance is measured in terms of
false rejection and false acceptance rates. Details of the this protocol can be found at
http://www.idiap.ch/�m2vts/Experiments/xm2vtsdbprotocol october.ps

The LDA face verification method can work successfully only when the images are
properly registered. In our work face registration is performed by an eye position de-
pendent utility. This utility takes four parameters computed from the eye coordinates
(rotation, scaling and translation in the horisontal and vertical directions) to crop the face
part from the original image and scale it to any desired resolution. Experiments were con-
ducted for different registration methods which depend on the manner the eye coordinates
are extracted.

Three different sets of eye coordinates were used for face registration in order to
investigate how the registration strategies influence the performance:

� Manual Registration which provides the ground truth eye positions with less than
� 1 pixel error. The verification errors obtained on manually registered images
define a baseline performance.

� Pseudo Registration which is based on eye coordinates generated synthetically
by perturbing the manually localised eye positions. The horizontal and vertical
coordinates of the eye positions were independently perturbed by adding random
displacements drawn from a normal distribution with a zero mean and standard
deviation equal to2. The objective of using pseudo registration was to investigate
how sensitive the verification method was to missregistration.

� Automatic Registration which was obtained by a fully automatic approach based
on robust correlation. As for the Pseudo Registration, only the evaluation set and
test sets were registered automatically.

Once an image is registered a Photometric Normalisation is applied to compensate for
changing illumination. We have experimented with the following methods:

-Zero Mean (ZM) : The mean of the image is removed from each pixel value.
-Zero Mean and Unit Variance (ZMST): The mean of the image is removed and the

pixel values scaled by their standard deviation.
-Histogram Equalisation (HEQ): The image is histogram equalised.
-Best Fitting Plane (FP): The best fitting plane is subtracted from the image.
-Best Fitting Plane and Unit Variance (FPST): After subtracting the best fitting

plane, the pixel values are scaled by their standard deviation.
-Best Fitting Plane and Histogram Equalisation (FPHQ): After subtracting the best

fitting plane,the image is histogram equalised.

4 Experimental results and discussion

The primary aim of our experiments was to compare the performance of the three different
score measures defined in the LDA space in the context of face verification. However,
a secondary objective was to investigate the effect of various methods of photometric






normalisation of the face images on the ranking of these measures. Our strategy was to
establish the relative merits of the different photometric normalisation methods on the
manually registered images and select only a subset of the most promising approaches for
an experimental evaluation of the scores on pseudo registered and automatically registered
data.

As mentioned earlier, the experiments were carried out according to the Lausanne
protocol which specifies that 200 clients be used for training. For this number of clients
the maximum dimensionality of the LDA space is 199. In our earlier work we inves-
tigated the relationship between the dimensionality of the LDA space and the verifica-
tion performance and showed that as the dimensionality of the feature space reduces, the
performance monotonically worsens. Although initially the degradation is very gradual,
allowing a significant reduction in the computational complexity without a serious per-
formance loss, we opted to experiment in the full LDA space.

Similarly, earlier experimental studies demonstrated that it is beneficial to low pass
filter the image data and subsample it. In fact the optimal performance was achieved with
a relatively low resolution face images, namely61 � 57 pixels. The results reported in
this section have been obtained with this image size.

The results obtained on the manually registered XM2VTS database are shown in Ta-
ble 1. The table is divided vertically into three sections presenting the performance figures
for the three different score measures. The entries are parameterised by the type of photo-
metric normalisation deployed. Each row reports the results on the evaluation set and test
set respectively. The evaluation set, which is independent of the training set, is used to
compute the receiver operating characteristics (ROC curve) by varying the client specific
threshold and measuring the correspondingfalse rejection(FR) andfalse acceptance(FR)
rates. The point on the ROC curve for which these two error rates are equal is selected as
the operating threshold. The equal error rates and their unweighted sum - the total error
(TE) - are noted in the table. The performance of the verification system at this operating
threshold is then verified on an independent test set and the results recorded in the last
three columns of the table. Note that in general there is a close agreement between the
results obtained on the evaluation and test sets which shows that the selected thresholds
generalise well.

From the table we can see that the photometric normalisation which involves subtract-
ing the best fitting plane (and the variations on the theme) does not generally improve the
system performance. By checking a number of images we noticed that the parameters of
the best fitting plane are often dominated by regions of total reflection in the image, rather
than by the underlying gradient in illumination. We also observed that removing the im-
age mean did not help much either. This can be explained by noting that the subtraction of
the global mean from each image performed a similar role which made the removal of the
image mean a superfluous operation. For this reason we limited our subsequent exper-
iments to consistently superior photometric normalisation methods, namely ZMST and
HEQ. Interestingly, the Euclidean distance score,sE , always delivered better results with
images normalised using ZMST whereas thesN andsD scores excelled on the histogram
equalised data.

Comparing the best results obtained with each of the matching scores, marked bold
in the table, we note that the score based on the proposed gradient metric delivers the
best performance overall. In fact the performance achieved with the new method is sig-
nificantly better than the result obtained with normalised correlation as predicted theo-






Score NOR Evaluation set Test set
FR FA TE FR FA TE

� 8.59 8.59 17.18 9.75 7.94 17.69
ZM 9.00 9.00 18.00 9.00 8.14 17.14

ZMST 3.33 3.33 6.66 2.25 3.43 5.68
sE HEQ 7.83 7.83 15.66 5.50 7.35 12.85

FP 9.17 9.17 18.34 9.25 8.31 17.56
FPST 9.00 9.00 18.00 8.00 8.42 16.42
FPHQ 10.00 10.00 20.00 6.75. 10.88 17.63
� 3.33 3.33 6.66 3.75 3.48 7.23

ZM 3.33 3.33 6.66 3.50 3.49 6.99
ZMST 3.83 3.83 7.66 3.00 3.95 6.95

sN HEQ 2.50 2.50 5.00 2.25 2.56 4.81
FP 3.50 3.50 7.00 3.50 3.64 7.14

FPST 3.76 3.76 7.52 3.75 3.90 7.65
FPHQ 3.33 3.33 6.66 2.25 3.45 5.70
� 2.95 2.95 5.90 2.50 2.80 5.30

sO HEQ 1.74 1.74 3.48 1.75 1.70 3.45
ZMST 3.33 3.33 6.66 2.67 3.51 6.18

Table 1: Performance of the three matching scores on manually registered images

retically. Interestingly, the method gives a very good performance even on the raw data
marked by symbol�. This is further improved by photometric normalisation using his-
togram equalisation. As in the case of the normalised correlation photometric normali-
sation by removing the image mean and scaling the variance does not have a beneficial
effect, in fact the opposite.

The purpose of experimenting with the pseudo registered image data was to establish
how robust the approach is to missregistration. As before the training was done using
the manually registered images. This is quite realistic even from the operational point
of view as it is most likely that client enrollment would be carried out under an operator
supervision and any errors in registration could be manually corrected. However, once the
training is completed, any future client access claim should be processed automatically.
It is therefore pertinent to understand the effect of registration errors on the system per-
formance. Accordingly, the ROC curve was computed using an evaluation set containing
images registered with perturbed eye coordinates. The verification system was then tested
on an independent test set for which the eye coordinates were also perturbed according to
the same error distribution.

The above experiments with the three score measures were limited to raw data, and
photometrically normalised images using ZMST and HEQ. The performance degrading
effect of missregistration is clearly visible from Table 2. In all cases the best results
degrade by a factor of two. The relative ranking in performance is preserved, including
the ordering of photometric normalisation methods.

The last set of experiments was conducted using evaluation and test sets with automat-
ically registered images. The results are presented in Table 3. They confirm the general

5Registration based on manual localised eye coordinates perturbed with 2 standard deviations.






Score NOR Evaluation set Test set
FR FA TE FR FA TE

� 14.67 14.67 29.34 16.00 14.33 30.33
sE HEQ 12.75 12.75 25.50 10.00 11.80 21.80

ZMST 4.83 4.83 9.66 4.25 4.94 9.19

� 5.33 5.35 10.68 4.50 5.53 10.03
sN HEQ 4.83 4.83 9.66 4.00 4.94 8.94

ZMST 6.33 6.33 12.66 4.75 6.43 11.18

� 4.50 4.50 9.00 4.75 4.26 9.01
sO HEQ 3.50 3.50 7.00 3.25 3.42 6.77

ZMST 5.00 5.00 10.00 4.25 5.11 9.36

Table 2: Performance of the three matching scores on pseudo registered images

trends predicted by the experiments on pseudo registered data. In fact the perturbation
model used to generate pseudo registered data reflects the statistical distribution of er-
rors of the automatic eye coordinate registration process [4] quite closely. The proposed
matching score again achieves the best performance which is more than 20% better than
the next best result. Interestingly, the Euclidean distance measure catches up and over-
takes normalised correlation.

Score NOR Evaluation set Test set
FR FA TE FR FA TE

� 13.50 13.50 27.00 13.25 14.23 27.48
sE HEQ 12.33 12.39 25.69 9.25 12.86 22.11

ZMST 4.83 4.83 9.66 4.50 4.78 9.28

� 6.00 6.00 12.00 6.25 6.20 12.45
sN HEQ 4.17 4.17 8.34 5.50 4.26 9.76

ZMST 4.33 4.33 8.66 5.25 4.44 9.69
� 4.77 4.77 9.54 5.50 4.57 10.07

sO HEQ 3.50 3.50 7.00 3.75 3.37 7.12
ZMST 4.67 4.67 9.34 4.25 4.57 8.82

Table 3: Performance of the three matching scores on automatically registered images

5 Conclusions

The performance of face verification systems using a LDA feature space depends on many
factors such as image registration, feature space dimension, photometric normalisation,
matching score and decision threshold. We investigated the issue of matching score def-
inition in the LDA feature space and established the reason behind the success of the
normalised correlation. The understanding gained about the role of metric then naturally
led to a novel way of measuring the distance between a probe image and a model, i.e. in
the gradient direction of the aposteriori probability of the hypothesised client identity. In
extensive experimental studies on a publicly available database1 using a standard proto-






col2 we showed that the proposed metric is consistently superior to both the Euclidean
distance and normalised correlation matching scores. The effect of various photometric
normalisations3 on the matching scores was also investigated.
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