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Abstract

This paper addresses the question of what can be said about the
colours in images that is independent of illumination. We make two
main assumptions: Firstly, the illumination can be characterised as
Planckian (a realistic assumption for most real scenes). Secondly, the
camera behaves as if it were equipped with narrow band sensors (true
for a large number of cameras). The resulting physics-based method
results in a transformation of the original colour image to a grey-scale
one which does not vary with illumination. We give results showing
invariance under a range of illumination conditions.

Keywords:- Colour Invariance, Colour Constancy, [llumination, Physics-Based,
Object Recognition.

1 Introduction

The light reaching our eye is a function of surface reflectance and illuminant color.
Yet, the colors that we perceive depend almost exclusively on surface reflectance;
the dependency due to illuminant color is removed through color constancy com-
putation. As an example, the white page of a book looks white whether viewed
under blue sky or under artificial light.

In computer vision the color constancy problem is usually posed as a two
step process. First an estimate of the illuminant is derived through statistical
analysis. Second this estimate is ’subtracted’ from the image (the image is color
corrected to remove any color cast due to illumination). The success or failure
of colour constancy algorithm depends mostly on the validity of the illuminant
estimate made. After many years of research, there are now good solutions to
color constancy; solutions that deliver good estimates of illumination most of the
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time[1]. However, even the best algorithms can and do fail. The failures that occur
are almost always due to images of scenes with color diversity is low (e.g. a scene
of nature containing only shades of green). This is probably not surprising since
in the pathological case of a scene containing a single surface it is not possible
to separate light from reflectance. A pink surface viewed under white light is
physically indistinguishable from a white surface viewed under pink light.

This paper presents a physics-based approach to colour invariance discovered
simultaneously at the University of Fast Anglia and Silsoe Research Institute. In
the paper we look at how one might usefully analyse and work with colour deficient
scenes, i.e. what can be said about the colours in the image that is independent
of illumination? That is, we do not aim to solve the classical colour constancy
problem but rather seek to identify that part of the problem that might easily
be solved. As an example it may be possible that we can say that an image
region corresponds to a pink or purple surface but that it is not green. This weak
conclusion is useful since it may ultimately help us to solve the colour constancy
problem: if a surface is pink then it might belong to a Caucasian face and face
colour can be used as a reference cue for illumination estimation.

Since we are no longer trying to estimate the illuminant but rather are pulling
out scene information independent of illumination we are really talking about
colour invariance (though we will make a strong link to classical colour constancy
later). Invariants are algebraic functions of a small number of proximal pixels
which have the property that they are independent of (by construction they cancel
out) dependency due to illumination. The key insight that is usually exploited is
that, assuming linear models of illumination, and linear device response, that
RGBs across an illumination are linearly or bilinearly related. Interestingly, many
color invariants[2, 3, 4, 5, 6, 7] already exist and their value has been shown in
many applications. Unfortunately, existing invariant approaches suffers from four
intrinsic problems. First, the linear illumination assumption is over general. The
non-linear Planckian locus (the region of colour space where typical illuminants lie)
is parameterizable by two numbers: intensity and temperature. Yet, to contain the
Planckian locus using a linear model requires 3 degrees of freedom. This increase
in dimensionality, necessary because linear models are being used, results in an
illumination model that can describe many lights which cannot occur in nature
(it is over general). This in turn reduces the amount of invariant information
that can be extracted from an image. Second, invariant computation to date is
only possible given spatial context (many pixels are required) and so is sensitive
to occlusion. Third, invariants can only be calculated assuming there are two or
more colors adjacent to one another (not true for objects such as bananas and
oranges). Fourth, invariants can be calculated post-color constancy computation
but the converse is not true[8]: color constancy adds more information if it can be
computed.

In this paper, we bridge the gap between the classical color constancy computa-
tion and the invariant approach. We begin with the premise that the chromaticities
of typical illuminants fall along a [Planckian] non-linear locus parameterizeable by
two numbers. This is true for most color cameras and most illuminants. With this
premise in hand, we ask: ‘does there exist exist a 1-dimensional color coordinate,
expressed as a function of the RGB or chromaticity, for which the color constancy
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problem can be solved?’ The idea here is that we take our RGB image, convert it
in some way to a grey-scale image, and then attempt to map the image grey-values
to those observed under reference lighting conditions. We show that if a camera is
equipped with narrow-band sensors (or behaves as if this were the case) then there
exists a color coordinate where color constancy computation is easy. Specifically,
there exists a coordinate which does not change with illumination (and so no map-
ping to reference conditions needs to be carried out). This invariant coordinate
is readily coded as a grey-scale. In summary, the main result of this paper is to
establish a coordinate transform that maps a colour RGB image to grey scale in
such a way that the calculated grey-values do not change either with a change in
the intensity or colour of the illumination.

To validate our new invariant theory images of different objects under different
lights are taken with a SONY-DXC 930 camera (a camera that has an effectively
narrow-band response). Each image is converted to a corresponding invariant
grey-scale image. We find that the grey-scale invariant images of the same object
viewed under different lights are almost the same. Indeed, the distribution of grey-
scales in an invariant image is shown to be a useful cue for content based image
indexing.

In section 2 of this paper we discuss color image formation and image variation
due to Planckian illumination. The invariant coordinate transform, for cameras
with narrow band sensitivities, is derived in section 3. Experimental results are
presented in section 4.

2 Background

An image taken with a linear device such as a digital color camera is composed of
sensor responses that can be described by

p, = / ENSOVR:(\dA (k= R, G, B) (1)

where A is wavelength, pj is sensor response k = R, G, B (red, green and blue
sensitivity), E is the illumination and S is the surface reflectance and Ry is a
camera sensitivity function. Integration is performed over the visible spectrum w.

Let us assume the Ry (A) = 6(A—Ag): it is a Dirac delta function with sensitivity
only at some wavelength \;. Dirac delta functions have the well known sifting

property:

pe = [ BSOS - A)dr = EQw)S () @)

Clearly, under Ej(A) and E5(A) the RGB response for a particular surface can be
related:

E\(Ar)S(AR) gﬁ&ﬁgEQ(AR)S(AR)
E(Aa)S0a) | = | BRIE(N6)SOa 3)
Ei(\p)S(\s) B0s) p, (35)S(Ap)

Ez()\B)
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To ease the notation we rewrite (3) as:

R1 a 0 0 R2
Gi|=|0 80 G- (4)
B1 0 0 Y B2

Remarkably, even Equation (4), which is really quite simple, is an over general
model of image formation. Illumination color is not arbitrary (we say nothing
about the shape of E(A) in Equation (1)) and so the scalars «, § and v in E-
quation (4) are not arbitrary either. To see that this is so, let us suppose that
illumination might be modeled as a black-body radiator using Planck’s famous
equation[9)]:

EO\T) = A5 (e% - 1)71 (5)

Equation (5) defines the spectral concentration of radiant excitance, in Watts per
square metre per wavelength interval as a function of wavelength A (in meters) and
temperature T (in Kelvin). The constants ¢; and ¢y are equal to 3.74183 x 1076
Wm? and 1.4388 x 1072 mK respectively. Equation (5) does not account for
varying illuminant power. To model varying power we add an intensity scalar I
to Planck’s formula:

-1

E\T) = T\ (e% - 1) (6)

While the shape of daylights and Planckian radiators is similar, this is not
true for Fluorescents (which tend to have highly localised emission spikes). But,
even here Equation (6) can be used. This can be done because we are not real-
ly interested in spectra per se but rather in how they combine with sensor and
surface in forming RGBs. For almost all daylights and typical man-made lights,
including fluorescents, there exists a black-body radiator, defined in (6), which,
when substituted in (1), will induce very similar RGBs[9]. Interestingly, if such a
substitution cannot be made, the color rendering index (broadly, how good sur-
face colors look under a particular light) is poor[9]. Indeed, the lighting industry
strives to manufacture lights with chromaticities close to the Planckian locus.

3 Invariance at a pixel

In this section we take our model of image formation together with Planck’s equa-
tion and show that there exists one coordinate of color, a function of RGB, that
is independent of light intensity and light color (where color is defined by temper-
ature). However, to make the derivation cleaner we first make a small (and often
made[9, 10]) simplifying alteration to (6). In Planck’s equation A is measured in
metres; thus, we can write wavelength A = y * 10~7 where y € [1,10] (the visible
spectrum is between 400 and 700 nanometers 10~?). Temperature is measured in
thousands of Kelvin or equivalently ¢ x 103 (where ¢ € [1,10]). Substituting into
the exponent of Equation (6) we see that:
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e 14388 x 1072 1.4388 x 10° M)
TA  yx10=-Txtx103 yxt

Because t is no larger than 10 (10000K) and there is no significant visual sensitivity

1.4388x 102
(for humans or most cameras) after 700nm, y < 7, it follows that e™  #¢ >>1

and so:

c

o

|
>

E\T) ~ I\ %e”
Substituting (8) in (2) we see that:

(8)

Pp = / BSOS = \)dA = Te; A% T% (M) (9)

Taking natural logarithms of both sides of (9),

C2
T

That is, log-sensor response is an additive sum of three parts: InI (depends
on the power of the illuminant but is independent of surface and light color),
In(S(Ax)A~?c1) (depends on surface reflectance but not illumination) and —#%
(which depends on illumination color but not reflectance).

Remembering that in (10), k = R, G, B; we have 3 relations which exhibit the
same structure: each of the In R,G and B sensor responses are an additive sum of
intensity, surface and illumination components. By canceling common terms, we
show below that we can derive two new relations which are intensity independent
(but depends on illumination color) and from these a final relation which depends
only on reflectance.

Inpe = In T +In(S(A)A;%er) — (10)

We begin by introducing the following simplifying notation: let Sy = In(S (), *c1)

and Ep = —52 (k = R, G, B sensor). The following two relations, red and green,
and blue and green log-chromaticity differences (or LCDs), are independent of
light intensity:

Pr =Ipr —Inpg = Sr — Sc + +(Er — Eg) (11)
pg =Inpp —Inpg = S — S¢ + = (Ep — Eg)
Now using the usual rules of substitution it is also a simple matter to derive a
relation that is independent of temperature:

, _(Er—Eg) , _ (Er — Eq)
Pr (EB — EG)pB (EB _ EG)

where all S and Ej, are independent of illuminant color and intensity. Equa-
tion (12) informs us that there exists a weighted combination of LCDs that is
independent of light intensity and light color.

The derivation set forth above though certainly elegant and simple has the
disadvantage that it is predicated on narrow-band sensors. Narrow-band sensors
are blind to large areas of the visible spectrum and so are not useful for general
imaging applications. However, in practice narrow-bandness need not be imple-
mented physically. Rather, it suffices that a camera which has non-narrow band

Sr —Sa — (S — Sa) (12)
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sensors behaves as if it had narrow-band sensitivities. This is in fact true for many
cameras. Even when cameras do not behave as if they were equipped with narrow-
band sensitivities this condition can often be enforced. All that is required is that
the initial sensitivities are transformed to a special ’sharp’ basis which behave like
narrow-band sensors. Such a transformation exists for the broad band sensitivities
of the human cones[11] and the spectrally broad band Kodak DCS 460 camera[12].
A grey scale invariant can be calculated for almost all imaging devices[13].

4 Experiments

So far, experimental work at the University of East Anglia has concentrated on
object recognition under different illuminants. At Silsoe Research Institute the
work has been directed at classifying scene components in sunlight with shadows
present. Here, for brevity, we present results from the first application area. Fuller
accounts of both areas will be published in due course.

Empirically we found that a SONY DXC-930 camera (sensitivities shown in
Figure 1) behaved as if it had narrow-band sensitivities. This enabled us to calcu-
late all the terms in (12) and so to calculate invariant images. We took 10 SONY
DXC-930, RGB images (from the Simon Fraser dataset[14]) of two colorful objects
(a beach ball and a detergent package) under the 5 illuminants: Macbeth fluores-
cent color temperature 5000K (with and without blue filter), Sylvania Cool white
fluorescent, Philips Ultralume, Sylvania Halogen. These illuminations constitute
typical everyday lighting conditions: yellowish to whitish to bluish lights. The
luminance grey scale images, calculated by summing R + G + B, are shown in the
top and third rows of Figure 11. It is clear that the simple luminance grey scale is
not stable across illumination. In rows 2 and 4 the corresponding invariant grey-
scale images are calculated (we map RGBs to scalars using (12) and code these as
a grey values). It is equally clear that the grey-scale pixels in these images do not
change significantly as the illumination changes. Also notice that qualitatively the
invariant images maintain good contrast: not only have we obtained illumination
invariance but the images that result are visually salient.

As a more concrete test of the utility of our calculated illuminant invariant we
carried out a set of object recognition experiments. To the beach ball and detergent
packages we added 9 other colorful objects. These too were imaged under all 5
lights[14]. For all 55 images we calculated their respective grey-scale invariant
histograms and then used these as an index for object recognition. Specifically, we
took each light in turn and used the corresponding 11 object histograms as feature
vectors for the object database. The remaining 44 object histograms were matched
against the database; the closest database histogram being used to identify the
object.

We found that a 16 bin invariant grey-scale histogram, matched using the Eu-
clidean distance metric[15], delivers near perfect recognition. Almost 96% of all
objects were correctly identified. Moreover, those incorrectly matched, were all
found to be the second best matching image. This performance is really quite
remarkable. Funt et al[14] measured the illuminant using a spectra-radiometer
and then corrected the image colors based on this measurement (so called perfect
color constancy). They then indexed objects by matching corrected chromaticity
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Figure 1: The spectral sensitivities for a SONY DXC-930 camera

histograms. Surprisingly they found that they could achieve only 92.3% recogni-
tion. Moreover, at least one object was matched in 4th place (the correct matching
histogram was the fourth best answer). These results indicates how difficult it is to
correct image colors across illumination even when the light is known. In contrast,
the invariant calculated here appears to be more stable (or at least more salient)
and this is reflected in better recognition results.

Funt et al also used a variety of color constancy algorithms, including max
RGB, grey-world and a neural net method[16, 17, 18], as a preprocessing step in
color distribution based recognition. All methods tested performed significantly
worse than the perfect color constancy case. No algorithm delivered supported
more than a 70% recognition rate.

Other color invariant based methods, predicated on functions of many image
pixels, have also been tried on the same data set[8]. None delivered results better
than the 96% recognition rate reported here.

5 Conclusions

In this paper we looked at image formation under Planckian illumination. For
the special case of cameras equipped with narrow-band sensors or cameras that
behave as if they had narrow band sensitivities, we showed that it is possible to
synthesise a grey-scale image which does not vary with illumination. This result
is verified by experiment: grey-scale invariant histograms are used as a cue for
recognising objects viewed under different illuminants.
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Figure 2: Raw luminance images of a beach ball box and Tide detergent box calcu-
lated across 5 coloured lights (rows 1 and 3) are compared with the corresponding
invariant grey-scale images (rows 2 and 4) . It is clear that luminance is not stable
across illumination but that the calculated invariant scale is very stable.

BMVC2000






