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Abstract

Image guided surgery (IGS) systems assist a surgeon in executing procedures
with minimal time, invasiveness and collateral damage. A key element in
IGS is providing the surgeon with a detailed model of the patient’s anatomy,
which he can visualize for planning, navigation and evaluation of delivery.
This requires computer vision algorithms to extract geometric models from
medical imagery, to register those models to one another and to the position
of the patient in the operating room, and to adapt those models to reflect
intra-operative changes in anatomy. Thus, a key aspect of IGS is creating
accurate, detailed, patient-specific models from medical imagery. In this
paper, we briefly outline an approach to image guided surgery, and present an
example of current methods for model building.

1 Introduction

Recent developments in computer vision and robotics are changing the practice of many
surgical procedures. Image guided surgical methods are providing a surgeon with the
ability to visualize internal structures and their geometric relationships, often in
alignment with live imagery or direct views of the patient. Such visualization methods
allow a surgeon to plan minimally invasive procedures. Tracking methods further allow
a surgeon to see the actual position of his instruments, and their physical relationship to
critical or hidden structures during a procedure, thus leading to faster, safer and more
effective minimally invasive procedures.

Our approach to Image Guided Surgery consists of the following stages:

* A set of medical images (such as MRI or CT) is acquired of the relevant
portion of the patient's anatomy (Figure 1).

e These images are segmented into distinct anatomical structures, yielding a 3D
patient-specific model (Figure 1).

e The model is then registered to the actual position of the patient on the
operating table. Surgical instruments are tracked relative to the patient and the
model, allowing the surgeon to effectively execute procedures while avoiding
hidden, critical structures (Figure 1).
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In this paper, we briefly outline current approaches to each of these stages, then examine
in more detail the first stage -- segmentation of medical scans into patient-specific
models that can be used for surgical planning, guidance, and navigation.

Figure 1: Standard imagery, such as MRI (1, highlights different tissue
responses. These images are converted to patient-specific modesl of anatomy.
They can be used both for planning (center) and to support navigation by
tracking surgical instruments (right).

1.1 Segmentation

The first stage converts standard medical imagery into information that more directly
reflects patient anatomy. As detailed in section 2, we use several algorithmic methods to
label individual elements of a volumetric scan by tissue type, and to collect those
labelled voxels into connected structures.

1.2 Registration

Given segmented models of the patient (see section 2), we want to use that information
to assist the surgeon. One aspect of this is to allow the surgeon to visualize structures
and their relationships, in order to support plan reliable procedures. To this end, it is
often useful to augment the structure models created by segmenting MRI data, with
functional and other information from other imagery (e.g., fMRI, PET, SPECT). This
requires registration of two or more different modalities. Since there is often no set of
corresponding landmarks between the scans, we have relied on a registration method
that finds the best alignment between image volumes, based on the alignment of all the
data in the volumes. In particular, our group has developed registration methods that
maximize the Mutual Information between data sets, and have demonstrated that such
methods can robustly align a wide range of medical imagery [24].

Once such augmented models are created, we also need to register them to the actual
position of the patient. To do this, we use a surface-matching algorithm. 3d data points
from the skin surface of the patient are acquired using a tracked probe (typical methods
involve locating synchronized LED's on the probe in a set of three cameras and using
triangulation to locate the probe, or using electromagnetic coils tracking small metal
balls attached to the probe, and similarly using triangulation to localize the probe).
These data points are then matched to the skin surface of the reconstructed patient model
to find the best fit, and thus to align the model with the actual patient position [11, 12].
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1.3 Visualization

Once the model and patient coordinate frames have been aligned, we can support
visualization of the model. In particular by calibrating a camera looking at the patient
over the surgeon's shoulder we can acquire live imagery of the surgical site. Since we
also know the position of the model with respect to the camera, we can render an image
of the internal structures of the model from the perspective of that camera. By
combining the two through a video mixer, we can generate augmented reality
visualizations, which enable the surgeon to see the positions of nearby structures that are
otherwise hidden from view below the currently exposed surgical surface.

1.4 Navigation

Finally, by tracking the position of any surgical instrument in the operating site, one can
relate the position of the tip of the instrument to the corresponding point on the
segmented model. By displaying this information on a monitor, the surgeon can rapidly
navigate to desired target sites while avoid critical structures.

2 Segmentation

The first stage of this pipeline is key. One must extract relevant information from the
medical imagery, in order to most effectively present it to the surgeon. This becomes a
problem of segmentation -- labelling each voxel of the image with the associated tissue
type, and then agglomerating adjacent voxels with common labels into connected
structures. In this section, we describe several current techniques.

2.1 Statistical labelling of images

Our base method uses statistical properties of tissue response in MRI imagery to classify
tissue type associated with each voxel [14,15,25]. The basis of the method is
straightforward. Suppose one could identify a small set of voxels of each desired tissue
type in the imagery, for example by using known anatomical landmarks. Record the
intensity in the MRI data at such points. This gives us a set of samples of the intensity
associated with each tissue type. In principle, a straightforward application of nearest
neighbor labelling can then be used to identify the tissue type associated with all other
points in the imagery.

Unfortunately, MRI imagery contains significant gain artefacts, which act as a nonlinear
multiplier on the observed signal. This causes simple nearest-neighbor schemes to fail.
As a consequence, our group has developed [14,15,25] methods that automatically
account for the gain artifact, while correctly identifying the tissue type, using the
Expectation/Maximization algorithm to iteratively solve for the gain field and the tissue
labelling. The method proceeds by finding the best labelling of the voxels, given the
current estimate of the gain field, then uses those labels to find the gain field estimate
that maximizes the expected value of the field. This cycle iterates to convergence and
provides accurate estimates of both the gain field and the tissue labels.
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The E/M method assumes a stationary prior on the intensities associated with different
tissue types (which can be found by measuring relative volumes of labelled voxels in
training images). Better use of anatomical knowledge can be made, however. One can
use Markov Random Field methods to impose local continuity on the labelling, and one
can use rough knowledge of the distribution of tissue types as a function of distance
from known landmarks to create non-stationary prior probabilities [14,15]. Such
methods essentially incorporate coarse atlas information to guide segmentation.

2.2 Using anatomical knowledge

Because segmentation often requires distinguishing ambiguous information, having prior
information about the expected shape of a structure can significantly aid in the
segmentation process. For example, one can find corresponding points across training
images, and use that to construct a statistical model of shape variation from the point
positions. In this case, the best match of the model to the image is found by searching
over the model parameters [8]. A second method [23] adds global shape information
into the segmentation task by using an elliptic Fourier decomposition of the boundary
and placing a Gaussian prior on the Fourier coefficients.

Our approach to object segmentation extends geodesic active contours [4,17] by
incorporating shape information into the evolution process. We first compute a
statistical shape model over a training set of curves. To segment a structure from an
image, we evolve an active contour both locally, based on image gradients and
curvature, and globally to a maximum likelihood estimate of shape and pose.

2.3 Probability Distribution on Shapes

To incorporate shape information into the process of segmenting an object in an image,
we consider a probabilistic approach, and compute a prior on shape variation given a set
of training instances. To build the shape model, we choose a representation of curves,
and then define a probability density function over the parameters of the representation.

2.3.1 Curve Representation

Each curve in the training dataset is embedded as the zero level set of a higher

dimensional surface, #, whose height is sampled at regular intervals (say N a samples,

where d is the number of dimensions). The embedding function chosen is the signed
distance function [22], where each sample encodes the distance to the nearest point on
the curve, with negative values inside the curve (Figure 2). Each such surface (distance

d
map) can be considered a point in a high dimensional space (# [1[] N ). The training
set consists of a set of surfaces { #,,u,,..., U, }. Our goal is to build a shape model over

this distribution of surfaces.
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Figure 2: Level sets of an embedding function u for a closed
curve C in the plane.

The mean surface, U, is computed by taking the mean of the signed distance functions,

U= Z U, . The variance in shape is computed using Principal Component Analysis
T

(PCA). The mean shape is subtracted from each sample surface to create an mean-offset
map, each of which is placed as a column vector in an N “xn dimensional matrix M .

Using Singular Value Decomposition (SVD), the covariance matrix M "Mis
decomposed as:

UsS'U=M"M
where U is a matrix whose column vectors represent the set of orthogonal modes of

shape variation and 2 is a diagonal matrix of corresponding singular values. An
estimate of a novel shape, #, of the same class of object can be represented by

k principal components in a k -dimensional vector of coefficients, Q :

a= Uk’lv(u —H)

where U, is a matrix consisting of the first K columns of U that is used to project a
surface into the eigen-space. Given the coefficients @ , an estimate of the shape is
reconstructed from U, and U :

u'=U,a+u

Note that in general u' will not be a true distance function, since convex linear
combinations of distance maps do not produce distance maps. However, the surfaces
generally still have advantageous properties of smoothness, local dependence, and zero
level sets consistent with the combination of original curves.

Under the assumption of a Gaussian distribution of shape represented by & , we can
compute the probability of a certain curve as:

1
P(ar) = ————
Ve |z, |

exp(—%arzk_la')
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where 2 « contains the first k rows and columns of 2 .

Figure 3: Outlines of the corpus callosum of 2 out of 51 patients in the
training set embedded as the zero level set of a higher dimensional surface,
the signed distance function.

Figure 3 shows two of the 51 training curves used to define the shape models of the
corpus callosum. The original segmentations of the images are overlaid as curves on the
signed-distance map. Before computing and combining the distance maps of these
training shapes, the curves were aligned using centroids and second moments to
approximate the correspondence. Figure 4 illustrates zero level sets corresponding to the
means and two primary modes of variance of the shape distribution of the corpus
callosum. Note that the mean shape and primary modes appear to be reasonable
representative shapes of the class of objects being learned. The first mode caputres size,
while the second mode captures the degree of curvature of the corpus. The third mode
appears to represent the shifting of the bulk of the corpus from front to back.

| NG IFGEY

T T 0

Figure 4: The first two primary modes of variance of the corpus callosum
training dataset.
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2.3.2 The Correspondence Problem

When measuring shape variance of a certain part of an object across a population, it is
important to compare like parts of the object. For example, when looking at variances in
the shape of the vertebrae, if two training examples are misaligned and a process of one
is overlapping a notch of the other, then the model will not be capturing the appropriate
anatomical shape variance seen across vertebrae. One solution to the correspondence
problem is to explicitly generate all point-wise correspondences to ensure that
comparisons are done consistently, although this is difficult to automate and is manually
tedious (see [8]). Another approach to correspondence is to roughly align the training
data before performing the comparison and variance calculation. A rough alignment
will not match every part of each training instance perfectly, so one must consider the
robustness of the representation to misalignment.

Using the signed distance map as the representation of shape provides tolerance to slight
misalignment of object features, in the attempt to avoid having to solve the general
correspondence problem. In the examples presented here, the rough rigid alignment of
the training instances resulted in the model capturing the shape variances inherent in the
population due to the dependence of nearby pixels in the shape representation.

2.4 Shape Priors and Geodesic Active Contours

Given a curve representation (the k-vector @ ) and a probability distribution on O ,
prior shape information can be folded into the segmentation process. This section
describes adding a term to the level set evolution equation to pull the surface in the
direction of the maximum likelihood shape and position of the final segmentation.

2.4.1 Geodesic Active Contours for Object Segmentation

The snake methodology defines an energy function E(C')over a curve C as the sum of

an internal and external energy of the curve, and evolves the curve to minimize the
energy [16].

E(C)=B[IC(a) |* dg ~ [I1BI(C(g) | dg

In [4], Caselles, et al. derive the equivalence of geodesic active contours to the
traditional energy-based active contours (snakes) framework by first reducing the
minimization problem to the following form:

min,, [g(BIC(@NNIC (9) | dg

where g is a function of the image gradient (usually of the form 1/ (14|07 ). Using
Euler-Lagrange, the following curve evolution equation is derived [4]

aC(t
% =gkN —(Ug LIN)N

t
where K is the curvature and NN is the unit normal. By defining an embedding function
u of the curve C, the update equation for a higher dimensional surface is [4]:
Ou

Fy =g(c+ k)| Uu | +0u Mg
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where ¢ is an image-dependent balloon force added to force the contour to flow
outward [9, 19]. In this level set framework, the surface, #, evolves at every point
perpendicular to the level sets as a function of the curvature at that point and the image
gradient.

Figure 5: Three steps in the evolution process. The evolving curve
is shown in solid blue superimposed on the image (top row). The
curve is matched to the expected curve to obtain a PDF over pose
(bottom row). The next evolution step (based on pose and shape) is
shown as the dotted blue line.

2.4.2 Estimation of Pose and Shape

In addition to evolving the level set based on the curvature and the image term, we
include a term that incorporates information about the shape of the object being
segmented. To add such a global shape force to the evolution, the pose of the evolving
curve with respect to the shape model must be known (see Figure 5). Without an
estimate of the pose, the shape model cannot adequately constrain or direct the
evolution. Therefore, at each step of the curve evolution, we seek to estimate the shape
parameters, @ , and the rigid pose parameters, p , of the final curve using a maximum

likelihood approach.
<aML,pML> =argmax, , P(a,p|u,0I)
In this equation, # is the evolving surface at some point in time, whose zero level set is

the curve that is segmenting the object. The term [1/ is the gradient of the image
containing the object to be segmented. By our definition of shape and pose, the final

segmentation curve is completely determined by @ and p . Let u" be the estimated

final curve, which can be computed from @ and p . Therefore, we also have

Uy, =argmax . P(u" |u,0I)
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To compute the maximum likelihood final curve, we expand the terms using Bayes'
Rule.
P(u|a,p)P(UI|a, p,u)P(a)P
P(@. p |y = P10 2)P(OL | a. p.w) P@)P(p)

P(u, 01
We proceed by defining each term of this equation in turn. We discard the normalization
term in the denominator as it does not depend on shape or pose. More details are
available in [18].

The first term computes the probability of a certain evolving curve, #, given the shape
and pose of the final curve, u (or <0’, p> ). Notice that this term does not include any

image information whatsoever. We model this term as a Laplacian density function over

v

outside >
P(u | a’ p) = exp(_Voul.side)

This term assumes that any curve # lying inside u'is equally likely. Since the initial
curve can be located at any point inside the object and the curve can evolve along any
path, we do not favor any such curve.

*
the volume of the curve  that lies outside the curve u .

The second term computes the probability of seeing certain image gradients given the
current and final curves. Let h(u*) be the best fit Gaussian to the samples (u* ).

We model the gradient probability term as a Laplacian of the goodness of fit of the
Gaussian.

POIu" ,u)= exp(—%ayvzk “a)

The last two terms are based on our prior models, as described earlier. Our shape prior

is a Gaussian model over the shape parameters, @ , with shape variance 2, .

1
Nem |z, |

In our current framework, we seek to segment one object from an image, and do not
retain prior information on the likelihood of the object appearing in a certain location.
Thus, we simply assume a uniform distribution over pose parameters, which can include
any type of transformation, depending on application.

P(p) = U(-,c0).

P(a) = exp(—%a"zk‘la)

These terms define the maximum likelihood estimator of shape and pose, which
estimates the final curve or segmentation of the object. For efficiency, these quantities
are computed only in a narrow band around the zero level set of the evolving surface,
and the ML pose and shape are re-estimated at each evolution step using simple gradient
ascent on the log likelihood function in the Bayes rule expansion. While each ascent
may yield a local maximum, the continuous re-estimation of these parameters as the
surface evolves generally results in convergence on the desired maximum. Next, we
incorporate this information into the update equation commonly used in level set
segmentation.
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2.4.3 Evolving the Surface

Initially, the surface, u, is assumed to be defined by at least one point that lies inside
the object to be segmented. Given the surface at time 7, we seek to compute an
evolution step that brings the curve closer to the correct final segmentation based on
local gradient and global shape information.

The level set update expression provides a means of evolving the surface # over time
towards the solution to the original curve-minimization problem. Therefore, the shape
of the surface at time 7 + 1 can be computed from %(7) by:

u(t +1) = u(r) + A (g(c + &) | Du(r) | +0u(r) g)

where /\1 is a parameter defining the update step size.

By estimating the final surface u ata given time /, we can also evolve the surface in
the direction of the maximum likelihood final surface:

u(t +1) =u(t) + A, (1) = u(0)
where A, LJ[0,1] is the linear coefficient that determines how much to trust the

maximum likelihood estimate. Combining these equations yields the final expression for
computing the surface at the next step.

u(t +1) =u(t) + A (g(c +K) | Du(e) | +0u(?) Mg) + A, (u” (1) — u(?))
The two parameters A and /\2 are used to balance the influence of the shape model

and the gradient-curvature model. The parameters also determine the overall step size of
the evolution. The trade-off between shape and image depends on how much faith one
has in the shape model and the imagery for a given application

2.5 Results

Figure 6: Three steps in the segmentation of two different corpora callosa.
The last image in each case shows the final segmentation in red. The cyan
contour is the result of the standard evolution without the shape influence.

Segmentation experiments were performed on 2D slices of MR images of the corpus
callosum (Figure 6). The corpus callosum training set consisted of 49 examples like

BMVC2000






those in Figure 3. The segmentations of two corpora callosa are shown in Figure 6.
Notice that while the ML shape estimator is initially incorrect, as the curve evolves, the
pose and shape parameters converge on the boundary. The segmentations of the femur
slices and the corpora all converged in under a minute on a 550 MHz Pentium III.

K Corpus 1 Corpus 2
95% 1.3 mm 1.5mm
99% 1.6 mm 2.0 mm

Table 1: Partial Hausdorff distance between our segmentation and the manually
segmented ground truth.

To validate the segmentation results, we compute the undirected partial Hausdorff
distance [13] between the boundary of the computed segmentation and the boundary of
the manually segmented ground truth. The directed partial Hausdorff distance over two
point sets A and B is defined as

hy(4,B) = K" min g, 0 @ =0 ||
where K is a quantile of the maximum distance. The undirected partial Hausdorff
distance is defined as H )4, B) = max(h, (A4, B),h, (B, A)) . The results for the

corpora shown in Table 1 indicate that virtually all the boundary points lie within one or
two voxels of the manual segmentation.
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