
Detection and Classification of Hyper-Spectral
Edges

Harro Stokman and Theo Gevers
ISIS, University of Amsterdam, Kruislaan 403

1098 SJ Amsterdam, The Netherlands
fstokman, geversg@wins.uva.nl

Abstract

Intensity-based edge detectors cannot distinguish whether an edge is caused
by material changes, shadows, surface orientation changes or by highlights.
Therefore, our aim is to classify the physical cause of an edge using hyper-
spectra obtained by a spectrograph. Methods are presented to detect edges in
hyperspectral images. In theory, the effect of varying imaging conditions is
analyzed for ”raw” hyper-spectra, for normalized hyper-spectra, and for hue
computed from hyper-spectra. From this analysis, an edge classifier is de-
rived which distinguishes hyper-spectral edges into the following types: (1)
a shadow or geometry edge, (2) a highlight edge, (3) a material edge.

1 Introduction

Edge information from an image can be used to measure or recognize objects in images.
Edges correspond to significant changes in the image, ideally at the boundary between two
different regions. However, false edges are often detected, and (parts of) important edges
are missing. Thus, after edge detection there remains the problem of obtaining meaningful
information about object boundaries using edges. We therefore believe that the classifica-
tion of edges in for instance shadow edge, geometry edge, highlight edge or material edge,
is useful. Intensity-based edge detectors cannot distinguish the physical cause of an edge.
In this paper, hyper-spectra are therefore used to classify the edges.

Physics-based segmentation methods have been studied for RGB images. Klinker et
al. [5] and Bajscy et al. [1] retrieve “dog-leg” planar clusters in RGB space. The segmen-
tation results are independent of different imaging conditions caused by the object geom-
etry, illumination and by highlights. Healey [4] proposed a physics-based method to seg-
ment images on the basis of normalized color. In this paper, methods are presented for
hyper-spectral color space transforms. The effect of varying imaging conditions is then
analyzed for raw hyper-spectra, for normalized hyper-spectra, and for the hue computed
from hyper-spectra.

A number of well established techniques for edge detection in ordinary (one-band) im-
ages are available [2] for example. There are various ways to combine the edge gradients
computed from the different color bands. In this paper, we will use the principled method
proposed by diZenzo [7] to combine the gradients of the hyper-spectral images. Gevers
presented in [3] an edge classification scheme which operated on edge maps from c1c2c3
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and l1l2l3 color spaces. The models are derived from RGB data. In this paper, we ex-
tend the edge detection and classification scheme to operate on color models derived from
hyper-spectra. Given the hyper-spectral gradients, we then employ the physics-based edge
classification scheme to distinguish edges into the following types: (1) a shadow or geom-
etry edge, (2) a highlight edge, (3) a material edge.

The paper is organized as follows. In Section 2, the dichromatic reflection model is
discussed. In Section 3, methods are presented for hyper-spectral color space transforms
and to detect edges in hyperspectral images. The edge classifier is given in Section 4. Ex-
periments are discussed in Section 5.

2 Dichromatic Reflection Model

Consider an image of an infinitesimal surface patch. Using N narrow-band filters with
spectral sensitivities given by f1(�):::fN (�) to obtain an image of the surface patch illumi-
nated by a spectral power distribution of the incident light denoted by e(�), the measured
sensor values are given according to Shafer [6] as:

Cn = mb(~n;~s)

Z
�

fn(�)e(�)cb(�)d� +ms(~n;~s; ~v)

Z
�

fn(�)e(�)cs(�)d� (1)

forCn giving the nth sensor response. Further, cb(�) and cs(�) are the albedo and Fresnel
reflectance respectively. � denotes the wavelength, ~n is the surface patch normal, ~s is the
direction of the illumination source, and ~v is the direction of the viewer. Geometric terms
mb and ms denote the geometric dependencies on the body and surface reflection respec-
tively and their range is 0 � mb(~n;~s) +ms(~n;~s; ~v) � 1. A matte object is described by
the body reflection, a shiny object by both the body and surface reflection. The neutral in-
terface reflection model assumes that the Fresnel reflectance has a constant value over for
all wavelengths in the visible spectrum. The surface reflection term of Eq. 1 is then written
as ms(~n;~s; ~v)cs

R
�
fn(�)e(�)d�. The dichromatic reflection model is valid for inhomo-

geneous dielectric materials and will be used to study and analyze the transformed color
spaces derived from hyper-spectra.

3 Photometric Invariance of Color Spaces Derived from
Hyper-Spectra

3.1 Photometric Invariance of Normalized Hyper-Spectra

Given a hyper-spectrum of N samples, the normalized hyper-spectrum is computed as

cn =
Cn

C1 + � � �+ CN

(2)

For a matte object, the normalized hyper-spectrum is invariant to the geometry of the ob-
ject. If the terms mb(~n;~s) and

R
�
fn(�)e(�)cb(�)d� of Eq. 1 are abbreviated to mb and

kn respectively, then the substitution of Eq. 1 in Eq. 2 gives

cn =
mbkn

mb(k1 + � � �+ kN )
=

kn

k1 + � � �+ kN
(3)
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independent of mb(~n;~s). In other words, normalized hyper-spectrum is invariant to shad-
ing and the shape of the object.

3.2 Calculation and Photometric Invariance of Hyper-Spectral Hue

Calculations Involving Hue The hue describes the tint of a color, e.g. red, green or blue.
Hue orders colors in a circular mode. As a consequence, calculations involving hue require
special care. If a number of hues are to be added, where wk corresponds to a weighting
factor for the kth hue Hk, we propose to decompose first the hue angles in a horizontal
and vertical component, and then to multiply these components with the weights. The hue
should then be taken as the angle between the summed horizontal and vertical component.
More specific:

g(fw1; � � � ; wNg; fH1; � � � ; HNg) = arctan

�P
i wi cos(Hi)P
i wi sin(Hi)

�
(4)

where weights wk of the set of weights fw1; � � � ; wNg corresponds to the hue Hk of the
set of hues fH1; � � � ; HNg.

To compute the difference between two hues H1 and H2, we propose that the hue an-
gles are first decomposed in a horizontal and vertical component, and to take the Euclidean
distance between these components as the hue difference. More specific:

diff(H1; H2) = [(cos(H1)� cos(H2))
2 + (sin(H1)� sin(H2))

2]1=2 (5)

which gives a difference diff(H1; H2) 2 [0; 2] between H1 and H2.
To derive the derivative of a hue image, we proceed as follows. Consider the first

derivative of the Gaussian G0(x; �) where x is a one-dimensional hue image and � the
spread of the Gaussian. Split G0(x; �) at the zero-crossing. Compute the weighted hue
sum for the two components using the weights of the split G0(x; �), and take the hue dif-
ference of the two results as the derivative. More specific:

rH = diff(H1; H2) where H1 = g(fw1; � � � ; wN=2g; fH1; � � � ; HN=2g)

H2 = g(fwN=2; � � � ; wNg; fHN=2; � � � ; HNg)

and fw1; � � � ; wN=2g = G0(x; �);x 2 (�1; 0)

fwN=2; � � � ; wNg = G0(x; �);x 2 (0;+1) (6)

where g() is defined by Eq. 4.

Obtaining Equal-Energy Illumination Consider the reflectance of a matte, white ref-
erence with constant spectral response, cb(�) = constant = 1. Assume that the surface nor-
mal is equal to the illumination direction, thus mb(~n;~s) = 1. As no specularities occur,
the measured sensor values are, according to Eq. 1:

Cn =

Z
�

fn(�)e(�)d� (7)

for Cn giving the nth sensor response for the white reference sample. This way, the spec-
tral transmittance of the illuminant is measured. Next, an image is captured of an arbitrary
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scene, and is divided by the previously obtained recording of the illuminant:

Cn =
mb(~n;~s)

R
�
fn(�)e(�)cb(�)d�R

�
fn(�)e(�)d�

+
ms(~n;~s; ~v)cs

R
�
fn(�)e(�)d�R

�
fn(�)e(�)d�

(8)

for Cn giving the nth sensor response. Now assume that the filter fn(�) is a narrow band
filter modeled as a unit impulse that is shifted over n wavelengths: The transmission at
�n = � and zero elsewhere. This allows Eq. 8 to be written as:

Cn =
mb(~n;~s)fn(�)e(�)cb(�)

fn(�)e(�)
+

ms(~n;~s; ~v)csfn(�)e(�)

fn(�)e(�)
(9)

and thus
Cn = mb(~n;~s)cb(�) +ms(~n;~s; ~v)cs (10)

implying that, under the assumption of a unit impulse band filter, the imagery can be made
independent of the illuminant, if the original image is divided by the spectral transmittance
of the illuminant.

Removal of the Saturation from the Hyper-Spectrum Saturation encodes how much
the color of the illuminant (e.g. white) is mixed with the pure hue (e.g. red). Removal of
the saturation from a spectrum is a two-step process: First, the spectrum is made indepen-
dent of the illuminant, as described in the previous paragraph. Second, under equal-energy
illumination, desaturating the spectrum consists of the subtraction of the maximum quan-
tity of equal-energy of the spectrum. More specific, we propose that all spectral samples
from a spectrum are transformed as:

ci = Ci �minfC1; � � � ; CNg (11)

As a result, the transformed spectrum is invariant to highlights: If mb;n(~n;~s)cb(�)+
ms(~n;~s; ~v)cs of Eq. 10 is abbreviated to mbkn +mscs, and let

mbkmin +mscs = minfmbk1 +mscs; � � � ;mbcN +mscsg (12)

The substitution of Eq. 10 in Eq. 11 now gives

cn = (mbkn +mscs)� (mbkmin +mscs) = mb(kn � kmin) (13)

Since Eq. 13 is independent of ms(~n;~s; ~v), it is proven that, under the condition of equal-
energy illumination, the desaturated spectrum is independent of highlights.

Hue Calculation from the Hyper-Spectrum After pre-processing of the spectrum ac-
cording to Eq. 8 and Eq. 11, the hue can be calculated directly from the hyper-spectrum.
Each spectral sample Ck is assigned a hue. The intensity of the sample is taken as the
weight of the assigned hue. The hue angle is then computed by weighted hue addition
using Eq. 4. More specific, we propose to compute the hue from the hyper-spectrum as:

H(C1; � � � ; CN ) = g(fC1; � � � ; CNg; ff(1); � � � ; f(N)g) where f(i) =
(i� 1)2�

N
(14)
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where function g() has been specified in Eq. 4, and the function f(i) assigns a hue to the ith
of N spectral samples. Since the input of the function is the desaturated spectrum, the hue
is invariant to highlights. Moreover, the hue is also independent of shadows and geometry.
To prove this, the transformed spectrum of Eq. 13 is substituted in Eq. 14:

H(C1; :::; CN ) = arctan
�
(mbk1�mbkmin) cos(f(1))+:::+(mbkN�mbkmin) cos(f(N))

(mbk1�mbkmin) sin(f(1))+:::+(mbkN�mbkmin) sin(f(N))

�
= arctan

�
(k1�kmin) cos(f(1))+:::+(kN�kmin) cos(f(N)

(k1�kmin) sin(f(1))+:::+(kN�kmin) sin(f(N)

�
(15)

independent of mb(~n;~s). Hence, hue is invariant to the geometry of the object and shad-
ows.

4 Reflectance Based Edge Classification

Edges are detected by taking the first derivative of a Gaussian from the ”raw” and normal-
ized hyper-spectra. The derivative of the hue is computed according to Eq. 6. The princi-
pled method proposed by diZenzo [7] is used to combine the gradients of the hyper-spectral
and normalized hyper-spectral images. In the previous sections, the effect of varying imag-
ing circumstances was analyzed in theory using the dichromatic reflection model for a
hyper-spectrum, a normalized hyper-spectrum, and for the hue computed from the hyper-
spectrum. As a result of this varying dependence on imaging conditions, the gradients
rraw;rnorm;rhue computed from the raw hyper-spectra, normalized hyper-spectra, and
hues respectively, are invariant or sensitive to these imaging conditions. The taxonomy is
given in Table 1. Based on this gradient taxonomy, we propose a color edge classifier that
distinguishes edges of the following types: (1) shadow or geometry edges, (2) highlight
edges, (3) material edges, as follows:

if rraw > traw and rnorm � rnorm

then classify rraw as shadow or geometry edge
else if rraw > traw and rhue � thue
then classify rnorm as highlight edge
else if rhue > thue
then classify rhue as material edge

For each edge maprraw;rnorm;rhue, edge pixels are identified by the selection of gra-
dient magnitude thresholds traw; tnorm; thue respectively. These threshold values can be
based on the noise level in the image, or can be set manually.

5 Experiments

In Fig. 1a, a red and a yellow wooden block are shown. The red block is oriented such,
that one side is shaded. A region is marked in white from which a hyper-spectral line-scan
image is taken. Hyperspectral images are obtained using the Imspector V7 spectograph,
Jain CV-M300 camera and Matrox Corona Framegrabber, under Philips Practitone A60
Daylight illumination. The hyper-spectral image is shown in Fig. 1b. The hyper-spectral
image of 760 x 580 pixels is filtered along the spectral axis with a uniform filter of size 9,
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geometry/shadow highlight material
rraw + + +
rnorm - + +
rhue - - +

Table 1: Taxonomy of color edges, - denotes invariant and + denotes sensitivity. The gra-
dient of raw hyper-spectrarraw is influenced by the geometry, shadows, object reflectance
and highlights. The gradient of normalized hyper-spectrarnorm is independent of geom-
etry and shadows, but is influenced by highlights and object reflectance. The gradient of
huerhue is only influenced by a change in object reflectance, which is caused by material
transitions.

(a) (b) (c)

Figure 1: a: Red and yellow wooden block. One side of the red block is shaded A region is
marked in white from which a hyper-spectral line-scan image is taken, which is shown in
b. Here, the top of the vertical axis corresponds to 400 nm, the bottom line corresponds to
700 nm. The horizontal axis represent spatial information. The gray values represent the
reflectance of the objects. The image can be divided in three regions: Left, the red object
is shown with high reflectance at the upper wavelengths. In the middle, due to the shading,
this reflectance is decreased. Right, the reflectance of the yellow object is shown, with high
reflectance at the upper and middle wavelengths. c: Red plastic object reflecting a strong
highlight, while a green plastic object makes up the background.
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Figure 2: a: 3-D graph of the downsampled linescan image of Fig. 1b. The x-axis of the
graph represents spatial data, the y-axis the spectral data, and the z-axis the reflectance
of the objects. Left, the red object is shown with high reflectance at the upper wavelengths.
In the middle, due to the shading, this reflectance is decreased. Right, the reflectance of the
yellow object is shown, with high reflectance at the upper and middle wavelengths. b: The
normalized spectra of Fig. a is identical for the entire range of the red object. The detected
and classified shadow/geometry edges are denoted by the dashed line at the bottom of the
graph, the detected and classified material edge is shown as a solid line.

after which 25 samples are taken in the 450 - 700 nm range. This spectral line scan image
thus has a dimension of 760 x 1 x 25. A visually comprehensive representation of the
sampled linescan image of Fig. 1b is shown in Fig. 2a where both the spectral and spatial
information are downsampled.

In Section 4, a rule-based edge classifier was presented. Based on comparison of the
edge maps from raw hyper-spectra and from normalized hyper-spectra, shadow/geometry
edges and material edges can be distinghuised. This is demonstrated in Fig. 2b where the
normalized spectra are identical for the entire range of the red object. As a result, an edge
detector finds the material edge. In contrast, an edge detector operating on the spectrum
of Fig. 2a finds the shadow and material edge. The combination of the edge maps thus
distinghuishes a shadow/geometry (dashed line at bottom of Fig. 2a) from a material edge
(solid line).

The next experiment is conducted on the line-scan obtained from the scene depicted in
Fig. 1c. Here, a red plastic object reflects a strong highlight, while a green plastic object
makes up the background. The highlight edges are detected by comparison of the normal-
ized spectral and the hue edge map. To compute the hue, the spectra are ’equal-energized’
or ’white-balanced’. The resulting spectra are shown in Fig. 3a. Next, the spectra are
desaturated, the resulting spectra are shown in Fig. 3b. The experiment shows that the
amount of highlight present in Fig. 3b is reduced compared to that of Fig. 3a. Due to noise,
some amount of highlight is still present. However, the decrease of saturation is sufficient
to distinghuish the red from the green object using hue, while the red object is recognized
as a whole. The edge map computed from the normalized spectra contains one material
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Figure 3: a: Plot of line-scan of the region shown in Fig. 1c. The plot can be divided in
two regions, the region corresponding to the red object and the region that represents the
green object. The highlight is visible in the red region as the subregion with increased
reflectance, which is constant over the entire spectral range. b: Desaturated spectra, the
amount of highlight is reduced compared to that of a. The detected and classified highlight
edges are denoted by the solid line at the bottom of the graph, the detected and classified
material edge is shown as a dashed line.

edge and two highlight edges, while the hue edge map contains only the material edge.
The detected and classified highlight edges are denoted by the solid line at the bottom of
the graph of Fig. 3a, the detected and classified material edge is shown as a dashed line.

In Fig. 4, the edge classifier operates on edge maps obtained from RGB data. The im-
age is taken with a properly white-balanced Sony XC-003P camera. The image in Fig. 4a
shows a number of toys. Highlights and shadows are present in the image. In Fig. 4b,
edges classified as material edges are shown in red, edges classified as highlight edges in
white, and edges classified as shadow/geometry edges in blue. The experiment shows that
the proposed methods for hue calculation and edge classification are also valid for ordinary
RGB images.

6 Summary

Methods were presented for hyper-spectral color space transforms and for edge detection
in hue images. In theory, the effect of varying imaging conditions was analyzed for raw
hyper-spectra, for normalized hyper-spectra, and for hue computed from hyper-spectra.
From the theoretical results, an edge classifier was derived which distinghuishes edges
from the following types: (1) a shadow or geometry edge, (2) a highlight edge, (3) a ma-
terial edge. The theoretical results were confirmed by experiments.
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(a) (b)

Figure 4: a: A number of toys with highlights and shadows. b: Classified edges. Material
edges are shown in red, highlight edges in white, and shadow edges in blue. The experi-
ment shows that the proposed methods for hue calculation and edge classification are also
valid for conventional RGB images.
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