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Abstract

The partitioning of 2D shapes into subparts is an important component

of shape analysis. This paper de�nes a formulation of convexity as a

criterion of good part decomposition. It's appropriateness is validated

by applying it to some simple shapes as well as against showing its

close correspondence with Ho�man and Singh's part saliency factors.

1 Introduction

A primary task in visual perception { for both biological and computer systems {

is the analysis of shape. Despite its importance universal theories of shape have

proven elusive, and much research continues to be carried out in a variety of dis-

ciplines including art, architecture, biological visual perception, psycholinguistics,

qualitative reasoning, and computer vision. One aspect of shape is the partitioning

of a region into parts whose shapes are either simpler than the overall shape, or

similar to an element from a prede�ned catalogue of primitive shapes [2]. Given

the inherent di�culties of vision, particularly those related to the variability in

the appearance of an object due to di�erent viewpoints or articulation of parts,

such a decomposition helps simplify the problem of perception. For instance, in

many cases there will be a one-to-one correspondence between observable region

parts and functional components of the viewed object.

Naturally image understanding involves a multitude of factors such as colour,

texture, shading, and motion, as well as non-visual information such as contextual

cues, prior expectations, etc. This paper is restricted to shape analysis, the impor-

tance and power of which was demonstrated by Biederman and Ju in experiments

where both colour photographs and line drawings (i.e. only shape information was

present) were recognised with comparable facility and speed [3].

Shape can be analysed by considering either a region's interior (i.e. the en-

closed area) or exterior (i.e. its boundary) [10]. Since one can be constructed

from the other interior and exterior representations of the region are equivalent,

and may make no di�erence to the analysis (e.g. identical shape descriptors are

calculated using either area or line moments). At other times explicitly repre-

senting the interior or exterior makes certain information easier to elicit. Some

of the di�culty in determining a good method for decomposing shapes into parts

is that the analysis needs to use both explicit boundary information (e.g. local

concavities) and interior information (more global shape descriptions).
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A popular shape representation since the 1960's, at least for extended ribbon-

like objects, is the skeleton or axis. This can be de�ned as the points of local

symmetry of the region. Labelling each axis point with the distance to the bound-

ary, and connecting adjacent points, gives a curve in 3D space from which Sanniti

di Baja and Thiel [13] determined part boundaries by a process of segmentation,

pruning, and merging. A variation of this approach that makes the combination of

interior and exterior information more explicit is presen ted by Abe et al. [1] who

segment the axes based on dominant points detected along the boundary.

Based on psychophysical and ecological considerations Siddiqi and Kimia [15]

described a partitioning scheme involving two types of parts: necks and limbs.

Necks were determined by diameters of locally minim al inscribed circles in the

region while limbs were lines through pairs of negative curvature minima having

co-circular boundary tangents (i.e. they join smoothly). Competing candidate

partitionings were resolved by computing salience values for parts. For necks

these were de�ned as the product of the curvature disparity across the neck and

the length of the part boundary line. A limb's salience was a function of the total

curvature curvature across the limb and the extent of limb across the part line.

Recently, Singh et al. [16] criticised Siddiqi and Kimia's scheme, noting that

the de�nitions for limbs and necks were too restrictive, and failed for a large class

of shapes. They proposed an alternative method to partition shapes: the short-cut

rule. Their de�nition of a part line, which they term a cut, is:

1. a straight line

2. crossing an axis

3. joining two boundary points

4. at least one of which has negative curvature;

5. if there are several possible competing cuts the shortest one is selected.

In addition, they use the minima rule [6] which states that negative minima of

curvature provide points for cutting the shape.

This paper in turn points out some limitations of Singh et al.'s scheme, and

proposes an alternative rule for partitioning shapes. All methods for segmenting

shapes to date have had several drawbacks { either computational or perceptual {

and the new approach is not perfect either.1 However, it does have the advantages

of appearing to provide perceptually reasonable results without requiring perfect

line data while its guiding principles are straightforward and uncluttered.

2 Limitations of the Short-cut Rule

A major weakness of Singh et al.'s short-cut rule is that it incorporates only very

limited global shape information. Initial cues for cut locations (negative curvature

minima) are exclusively determined from the boundary information. More global

shape information is introduced in two ways.

1It may be that shape segmentation is as di�cult as edge detection, for which there have

been hundreds of algorithms proposed during the last 35 years without an entirely satisfactory

one being found.
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Figure 1: The cut (drawn dashed) shown will not be selected as it does not cross

the axes (drawn grey)

1. The length of the cut, involving only minima l shape information.

2. Restricting of the cut to cross an axis. Using the object axes introduces

several di�culties:

(a) In the computer vision literature there have been many de�nitions of

axes over the years [9, 11], and since they will often produce di�erent

axes from the same shape this variability will a�ect the generation of

cuts. Singh et al. state that they use Brady and Asada's [4] de�nition

of axes, but this appears to be an arbitrary choice since no justi�cation

is given.

(b) Robust computation of axes is di�cult since from their v ery de�nition

most axes are extremely sensitiv e to noise. Small perturbations of the

boundary can radically alter the axis. In practice the results often need

to be extensively post-processed to eliminate spurious axes. Thus, using

region axes reduces the practical e�ectiveness of Singh et al.'s scheme

although its inclusion was necessary to avoid short but undesirable cuts.

(c) Perceptually valid cuts need not properly cross an axis; �gure 1 shows an

example of a cut that instead crosses the junctions of the axis branches

and for most of its length coincides with the central branch of the axis.

The second major weakness is that the sole determinant of salience is the length

of the cut. Obviously there is more to salience than cut length. In fact, in another

paper Ho�man and Singh [7] isolate three factors a�ecting part salience: relative

area, amount of protrusion, and normalised curvature across the part boundary,

but they do not integrate these into the shape partitioning scheme.

(a) (b) (c)

Figure 2: Should cuts be made to (a) the closest negative curvature minimum (b)

the closest boundary point irrespective of its curvature, or (c) some other point?

Singh et al. only require one end of a cut to lie on a portion of boundary with

negative curvature (i.e. an indent). This avoids unintuitive partitions such as

�gure 2a in which the only two cusps have been joined to each other. The shortest

cut from each cusp as they propose does produce a more sensible partitioning

(�gure 2b), but the longer cuts in �gure 2c look better yet. As Singh et al.
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point out in their concluding remarks their short-cut rule and minima rule do not

incorporate all the important perceptual factors involved in shape perception (e.g.

the Gestalt principles of symmetry and good con tinuation).

(a) (b)

Figure 3: Should cuts be made to (a) the closest negative curvature minimum (b)

the closest boundary point irrespective of its curvature?

Further examples in which the shortest cuts are inferior are easy to �nd. For

instance, in �gure 3 the single cut joining the cusps looks preferable to the shortest

cut.

(a) (b)

Figure 4: Problems with the short-cut rule; (a) selecting closest boundary points,

(b) selecting closest cusps

In �gure 4a the shortest cuts make little sense, even though they do cross

the region's axes. Actually, the true shortest cuts would be angled such as to be

almost vertical, partitioning in�nitesimal slivers o� the region. On the other hand,

if we consider cuts between pairs of cusps instead, the short-cut rule still leads to

di�culties. The problem is that unlike our previous examples, the members of

pairs of cusps forming cuts are not both the closest cusp to each other, as shown

in �gure 4b. Here the cusps closest to the ends are closest to the opposite central

cusp leading to oversegmentation. Meanwhile the central cusps are closest to each

other. The two triangular regions formed by the cuts have no perceptual relevance.

Two alternative, more appropriate partitionings would be to keep either the two

outer cuts or the inner one.

3 Convex Partitioning

Various formulations and approximations of convexity have been used as criteria

by previous authors for object decomposition. For instance, some early work by

Pavlidis [10] proposed segmenting polygons into convex subsets. However, the

approach was computationally expensive, and a simpler implemen tation restricted

to a decomposition into horizontal and vertical rectangles was shown.

Shapiro and Haralick [14] showed that dense clusters of internal line segments

form at convex parts of regions. Thus they applied a clustering algorithm to

identify local areas of high compactness which are then merged to form larger

BMVC99

636



British Machine Vision Conference

subparts. Unfortunately this process required specifying many parameters, namely

thresholds for cluster overlap, compactness, association, and size.

Held and Abe [5] de�ned an approximate measure of convexity based on the

fraction of the region boundary that coincided with the region's convex hull. The

initial stages of their algorithm was based on boundary dominant points and the

skeleton, similar to that by Abe et al. [1]. A structuring element was applied to

the segmented branches of the axes, and these were then merged dependent on

their convexity value. Again various parameters were required to control the axes

segmentation and merging stages.

Recently Latecki and Lak�amper [8] avoided the many of the di�culties of the

above approaches, using their so called \discrete evolution by digital lineariza-

tion". Boundary points are iteratively deleted (or equivalently adjacent line pairs

are merged) until the resulting shape is convex. At each iteration the line pair

merge with the lowest cost (which is a function of its length and curvature) is

selected. The iterations produce a hierarchy of maximally convex boundary arcs,

each of which de�nes a cut by the straight line joining its endpoints. The ad-

vantage of the scheme is that it only requires one parameter to threshold the

cuts according to their saliency. However, the disadvantages are threefold. First,

the strict ordering of the line merging may restrict the formation of some salien t

cuts. Second, only boundary information is used even though region information

is generally considered important. Third, Latecki and Lak�amper state that for

continuous data cuts would terminate at points of in
ection. However, in practice

they appear to be restricted to lie on indentations, i.e. near maxima of negative

curvature. As we have previously discussed, this is over-restrictive, and causes

poor results. For example, the L shape of the kangaroo's foot (in Latecki and

Lak�amper's �gure 6) is not properly partitioned since it needs the cut to termi-

nate at the maximum of positive curvature. Other examples of inappropriate cuts

are shown in Latecki and Lak�amper's �gure 5, shapes 2, 5, and 7.

This paper proposes segmenting regions into roughly convex parts in a more

direct manner that the above approaches, and avoids many of their complications.

Only two components are required:

1. a measure of convexity, and

2. an optimisation scheme.

Convexity of a partitioned region is calculated as the weighted sum of the convex-

ities of its parts

CP =
1

AR

nX
i=1

AiCi

where the region R is decomposed into n parts which individually have area Ai

and convexity Ci, and the total area AR =
Pn

i=1Ai. A region's (or subpart's)

convexity is calculated as the ratio of the area of the region to the area of its

convex hull. Thus the calculation of convexity becomes

CP =
1

AR

nX
i=1

A2
i

Hi
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where Hi is the area of the convex hull of part i. The individual and combined

convexity measures return a score of one for a perfect convex region and approach

zero for shapes with extremely deep concavities. Given a speci�cation of the

number of desired cuts the aim of the optimisation stage is to �nd the best set

of cuts to maximise CP . The advantage of this scheme is that it is extremely

simple to de�ne, not requiring many parameters such as Shapiro and Haralick's

clustering method or Sanniti di Baja and Thiel's axis pruning/merging method.

Moreover, convexity combines both interior and exterior aspects of shape, so that

the salience of a segmentation is better re
ected by convexity than by cut length.

a

c d

θ

e

b

f

Figure 5: A simple parameterised shape for measuring salience

In fact, it can be seen that convexity is closely related to Ho�man and Singh's

part salience factors. These consist of the size of the part relative to the whole

object, the degree to which the part protrudes, and the strength of its boundaries

(measurable as the turning angle). Using psychophysical experiments they showed

that the factors exhibit high correlation with human vision behaviour. As a simple

demonstration of the connection between convexity and Ho�man and Singh's part

salience factors we examine the shape in �gure 5 containing a block with one

protruding part. The convexity of the total region is

C1 =
2(ab+ ce+ de) + cf

a(2b+ e + f)
:

After the cut the convexity of the resulting part decomposition becomes

C2 =

(ab+e(c+d))2

a(b+e)�de
+ cf

2

ab+ de+ c(e + f
2
)

and so the improvement gained by partitioning isS = C2�C1, which we will take

as a measure of salience for the comparison. Ho�man and Singh's measure for

part size is calculated as the relative area of the part

cf

2(ab+ ce+ de) + cf
;

the degree of protrusion is the ratio of the perimeter of the part (excluding the

base) to the length of the base (i.e. the cut)

p
c2 + 4f2

c
;
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and the turning angle is

� � � = tan�1
d

e
+ tan�1

2f

c
�

�
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Figure 6: Saliency measures calculated over variations of the shape in �gure 5; (a)

& (d) increasing relative area (b) & (e) increasing protrusion; (b) & (f) decreasing

turning angle (a-c) Ho�man and Singh's part saliency factors (d-f) corresponding

convexity saliency factor

Figure 6 shows the e�ects that modifying the shape has on the saliency factors.

The parameters are �rst set to a = 50, b = 50, c = 2, d = 10, e = 1, f = 2.

Changing even one parameter can a�ect all the saliency factors; for instance,

increasing c decreases the turning angle and the subpart's degree of protrusion

and increases its relative area. Therefore to limit the changes to one factor at a

time we modify the parameters as follows:

� increasing relative area { c and f are both increased by scale factor s

� increasing protrusion { this is obtained by increasing f ; the turning angle is

�xed by setting

e0 = d cot

�
tan�1

d

e
+ tan�1

2f

c
� tan�1

2f 0

c

�

where e0 and f 0 are the new values of e and f ; the relative area is then �xed

by setting a0 =
p
sa and b0 =

p
sb where

s =
f

f 0
+

f(c + d)(e � e0)

abf 0

� decreasing turning angle { e is increased; to maintain the same relative area

b is modi�ed to

b0 = b+
(c+ d)(e� e0)

a

where b0 and e0 are the new values of b and e; in addition, as increasing e

causes the part to be pushed out relative to the horizontal surface adjacent

to d, that section is removed by setting d = a�c
2

A good correspondence can be seen between Ho�man and Singh's part saliency

factors and the convexity saliency factor. Nonetheless this does not necessarily

always hold. Since Ho�man and Singh's factors do not uniquely determine the

shape then even with such a simple shape there are alternative normalisations to

those used in this paper which may behave di�erently.
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a b c d e f g h i j k

Figure 7: Example shapes with best single cut

4 Examples

a b c d e f g h i j

Figure 8: Example shapes with best pair of cuts

The application of the convexity rule to some examples shapes drawn from previous

papers in the �eld and other sources is shown in �gures 7 and 8. The shapes

have been roughly grouped into order according to the following characteristics:

one concavity, one protrusion, two major indentations leading to two parts, three

parts, four parts, and \L" shapes. Using a single cut it can be seen that the

majority of the decompositions are sensible (�gure 7). This includes shapes which

are problematic for the algorithms of Latecki and Lak�amper (�gure 7a and 7k),

Siddiqi and Kimia (�gure 7b and 7f), and Singh et al. (�gure 7h). In cases where

a single cut is inappropriate the result providing maximal convexity is sometimes

appropriate (�gure 7i) while at other times less appropriate (�gure 7j).

Further examples showing the decomposition resulting from pairs of cuts are

shown in �gure 8. Where there are three natural parts to the object then these

have been found. In other situations the decomposition is also plausible. For in-

stance, the parts in �gure 8b have qualitatively di�erent characteristics: elongated,

tapering, and circular. In �gures 8e{8f the third part that can now be detected

using the addition cut is the connector between the two primary object parts.

5 Discussion

We have described a part decomposition scheme based on maxim ising convexity.

It's advantages are �rst, that it is simple, and does not require many stages of

processing with attendant parameters that require selection. Second, the con-

vexity criterion appears perceptually valid, as tested on some simple shapes as

well as against Ho�man and Singh's part saliency factors. However, there remain

some limitations with the proposed approach; these are listed with some possible

solutions.

� E�ciency. The results in section 4 were obtained using an exhaustive search

at two scales. First a version subsampled by a factor between 5 and 10 was pro-
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a b c

Figure 9: Example shapes with �ve cuts

cessed. This was subsequently re�ned on the full resolution version. However,

for larger numbers of cuts this becomes computationally excessiv e. We have ex-

perimented using a simple random optimisation approac h. Dominant points are

found on the curve using a standard algorithm (Ramer's polygonisation). These

are used as seeds for initial endpoints of cuts. The threshold used for detecting

the seed points is not crucial; there is a tradeo� between subsequent e�ciency

and accuracy/correctness. All valid cuts formed by pairs of cuts are determined.

The constraint is that the line formed must lie within the shape. To determine

a good set of n cuts many sets of n randomly selected cuts are tested, re�ned by

shifting their endpoints, and the best (i.e. producing the most convex partition-

ing) is retained. Figure 9 shows some results partitioned with �ve cuts. Although

good results are achievable this simple scheme still requires fairly large amounts of

processing time. A better approach would be to use a genetic algorithm to direct

the optimisation since this would enable partial solutions to be reused unlike the

current scheme in which each random set is generated and tested in isolation from

all the others.

� Number of cuts. A means is required for specifying the number of parts to

decompose the region into. This is the same problem presen t with the segmentation

of curves into straight lines, and the same solutions can be applied. One approach

is to look for a discontinuity in the convexity versus number of parts graph. A


attening of the graph indicates that additional cuts are not signi�cantly improving

the quality of the output, and are therefore not cost-e�ective and undesirable [12].

� Straight versus curved cuts. Like most previous algorithms for part decompo-

sition for algorithmic simplicity the cut is restricted to a straight line even though

we showed that this is not always appropriate. In fact, even if curved cuts were

allowed they would not necessarily be chosen by our scheme.

Figure 10: Convexity provides no indication of which is the best of the three

possible cuts

� Saliency. Convexity does not always provide complete saliency informa-

tion. For instance, in �gure 10 all three cuts indicated would produce decom-

positions into perfectly convex parts with identical scores although Singh et al.
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demonstrated a perceptual preference for the shortest cut. One way to overcome

this and other de�ciencies of the convexity measure would be to augment it with

other saliency factors such as length of cut, size of segmented regions, goodness

of boundary continuation, etc. The di�culty would be to learn how to combine

them appropriately. Otherwise the same di�culties arise as with snakes, which

are often formulated to minimise some weighted sum of error factors; although few

guidelines are given for setting the weights, their values are often critical to the

�nal result.
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