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Abstract

The problem of hip joint centre location using optical markers located on

the skin is addressed. We present a novel computational technique which can

recover joint centre location based solely on the marker measurements. In

addition a quantitative estimate of the uncertainty in joint centre location is

obtained.

We also present some preliminary experimental validation of the technique

on a rigid jointed object.

1 Introduction

In a number of biomedical applications it is of interest to compute kinematic and

dynamic quantities of human bodies in motion. Commercially available marker-

based optical motion capture systems are widely used for this purpose. Many of

these systems use retrore
ective markers attached to the subject and a number of

cameras. The technology for extracting by triangulation accurate 3D coordinates

of the markers is well established.

The underlying assumption in this approach is that the human body can be

modelled as a collection of rigid segments connected by ball or hinge joints. The skin

mounted markers are a relatively non-intrusive indicator of bone position, although

soft tissue movement can be a signi�cant source of error. In addition it can be

di�cult to locate palpable bony landmarks due to the tissue layer between the

surface and the bone.

In these systems the number of markers is usually small, between 0 and 5 per

`rigid' segment. Usually the centres of rotation are supplied by an independent

method and an inverse kinematics computation is performed to obtain the Euler

angles of relative rotations about the joint centre.

There is also much current interest in articulated systems in the �eld of computer

vision. The primary motivation is the rapid progress in techniques for capturing

human motion in a variety of applications. In many cases the model of a human as

a collection of rigid segments joined by rotational joints is an appropriate approxi-

mation or level of abstraction.

In this paper we present a method for extracting the joint centre in the two

segment case providing that at least 3 markers are available on each segment. This

information is a crucial building block in kinematic analysis of the motion data.
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The motion data has a variety of uses in planning and evaluation of surgical and

orthotic interventions. However the algorithm will be of general use in the analysis

of other systems of articulated segments. The algorithm also quanti�es the error in

joint centre location.

2 This paper

In this paper we present a novel algorithm for hip joint centre location and uncer-

tainty estimation from marker positions. Firstly, using standard methods we extract

the pose of segments from the marker positions. Then we compute the joint centres

from the segment poses. An analytic solution is presented followed by a solution

to the linearised problem. The linearised solution is preferred since it produces a

covariance matrix for the joint centre estimate.

We conclude by presenting some preliminary experimental validation of the tech-

nique on a two segment jointed test object.

3 Literature Review

We �rstly consider previous work in the �eld of Biomedical engineering. A highly

accurate estimate of hip joint position can be obtained by X-rays from more than

one view, but this is not always convenient or justi�ed. At the other extreme there

are heuristic methods such as the following method quoted by Bell et al [4]. \The

hip joint centre lies about 15-20mm directly distal to the midpoint of a line from the

pubic symphasis and the anterior superior iliac spines in a frontal plane projection

and directly medial from the greater trochanter in the sagittal plane."

Such methods can be accurate in the region of 20 mm but are generally predi-

cated on speci�c sets of subjects, e.g. healthy males between 20 and 40 years of age.

They are not suitable for subjects widely varying in age or pathological subjects.

For this reason Bell et al [4] made a quantitative comparison of several methods

of hip joint centre location. They looked at previous heuristic methods based on

correlations between palpable anatomical landmarks and a method based on skin

mounted optical markers. X-rays provided ground truth. Their method is similar to

our own in that they infer the joint centre from optical markers, but they provide no

details of their approach and its seems that they did not develop the mathematical

framework beyond a rudimentary stage.

Neptune and Hull [13] studied the accuracy of four di�erent techniques for deter-

mining the location of the hip joint centre. The reference technique was an invasive

technique which involved a screw inserted into the pelvis of a live subject. Mounted

on the screw was a triad of optical markers. The true hip joint centre was located

by X-rays with the bone mounted marker set in place. The subject then cycled

on a stationary bicycle and the hip joint centre was estimated using the reference

technique and 2 other non-invasive techniques. The reference technique was be-

lieved to be considerably more accurate than the noninvasive techniques for which

the quoted errors were up to to 13mm rms and 23mm in bias along the worst axis.

The reference technique was computed using pose transformations estimated

by direct computation and heuristic (semi-quantitative) estimation of errors. It is

implied that the error in joint centre was much less than 1.6mm.

The main source of errors in the non-invasive techniques are simplistic anatom-

ical assumptions and soft-tissue movement. We believe that more powerful mathe-

matical tools allow the optimal use of redundant data in this type of computation,

although it is typical in many �elds to use only minimal marker sets and corre-

spondingly simpler mathematical techniques.
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In a more recent study Lu and O'Connor [10] presented a method for obtaining

bone segment joint angles from marker measurements called the Global Optimisa-

tion Method (GOM). They suggest that they improve upon previous work in that

the joint constraints are rigorously enforced. ( In much previous work on multiple

segments this is not true! ) However the joint centres are supplied as inputs to their

technique. They do consider in some detail the magnitude and nature of the skin

marker measurement error. They present results of numerical experiments with a

random phase sinusoidal error in marker position which show that their method is

better than methods which do not properly enforce joint constraints.

We now consider previous work in the �eld of computer vision. The area of

human motion capture from one or more cameras is currently under active inves-

tigation by a number of investigators, for a recent review see Aggarwal and Cai

[1].

The goal of much of the work described by Aggarwal and Cai is to capture

motion under uncontrolled conditions without markers. The problem is severely

underdetermined and many authors contend that model based methods will be

useful for a solution to this problem. We consider only those methods that use a

3D articulated volumetric model of rigid segments.

The essence of model-based methods is the assumption that it is desirable to

add prior knowledge to constrain and facilitate scene interpretation. Most authors

therefore assume detailed kinematic knowledge a priori. This usually includes the

dimensions of the subject and the joint positions. Some typical examples of work

in this area are listed [18, 15, 16, 12, 17, 5, 6, 8].

Apart from human tracking there is other work worth noting as being relevant

to the task of joint centre location. Closely related work is that of Ashbrook et al

[2, 3] who address the automatic construction of models of articulated objects from

range data.

Probably the most closely related work to our own is that of Heap and Hogg

[7] who investigated pivot location for the study of articulated objects by point

distribution models in polar co-ordinates. They presented a least squares expression

similar to the analytic method in this paper. Ours di�ers in two minor ways. We

extend the 2D case to 3D, and by a di�erent choice of coordinate systems reduce

by half the number of variables over which it is necessary to solve. They did not

consider the possibility of predicting the pivot positional error but instead study it

by numerical experiments.

4 The problem

We suppose that there are 2 objects/segments labelled by � = 0; 1 and each object

has markers labelled by i = 0::N� � 1. The marker position is given in the world

coordinate system by ~y �

i
(t) where a set of measurements is made over discrete time

instants t = 0::Nt � 1.

We de�ne a body �xed coordinate system attached to each segment. In this

coordinate system the markers have position ~x �

i
which does not vary with time.

As the segment moves over time the coordinate transform required to convert the

body centred coordinates ~x �

i
to the world coordinates ~y �

i
(t) is denoted by f�(t) =

fR�(t); ~d �(t)g. The coordinate transform consists of a 3� 3 rotation matrix R�(t)

and a translation vector ~d �(t) We write

~y �

i
(t) = f�(t) � ~x �

i
= R�(t)~x �

i
+ ~d �(t) (1)

All 3 coordinate systems are at this point entirely arbitrary and it is helpful to

remove some of this degeneracy to simplify the problem. We therefore impose that
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the two body �xed coordinate systems coincide with the world coordinate system

at t = 0, hence that f0(0) = f1(0) = I, the identity transform.

We suppose that the two segments are joined by a ball joint which has body

�xed coordinate ~c 0 on segment 0 and ~c 1 on segment 1. Because we have chosen

that the body �xed coordinate systems coincide at t = 0 it follows that ~c 0 = ~c 1

and we can discard the superscript.

At all subsequent time instants the world position of the two joint centres must

coincide, and this is expressed by the joint constraint,

0 = f0(t) � ~c� f1(t) � ~c: (2)

The problem we would like to solve is to �nd ~c given a series of measurements

~y�
i
(t). The measurements will be noisy and we approximate the true unknown noise

distribution by isotropic Gaussian noise n�
i
(t) with variance �2 = Tr(Wy).

~y �

i
(t) = f�(t) � ~x �

i
+ n�

i
(t) (3)

Finally a note on rotations. We represent rotation where appropriate by either the

3� 3 rotation matrix R or the 3� 1 vector r = �n̂ where the rotation is by angle �
in radians about axis n̂. Use of the latter representation is necessary for discussions
of rotational covariance.

5 Obtaining segment poses

We propose a two stage solution. Firstly we use an existing method to obtain

an estimate of the pose for each segment at each time instant. The least squares

estimate for the coordinate transform f̂�(t) will minimise the objective function

E[f�(t)] =

N��1X
i=0

[~y �

i
(t)� f�(t) � ~x �

i
]
2

(4)

Kanatani [9] has proposed an analytic solution based on the singular value decom-

postion (SVD) of a 3 � 3 matrix which provides a unique solution provided that

neither set of points is collinear and that there are at least 3 points.

The body �xed coordinates are not initially supplied and must be estimated.

To start with we set ~x �

i
 ~y �

i
(t = 0). The ~y �

i
(t) are noisy measurements and we

can do better by iterating over the following process a few times. In step 1 we are

given ~x �

i
and solve for f̂�(t) using (4). In step 2 we improve the ~x �

i
using

~x �

i
=

1

Nt

Nt�1X
t=0

f̂�(0)
h
f̂�(t)

i
�1

~y �

i
(t) (5)

In our experience this procedure always converges to 15 decimals of precision in

less than 5 iterations. It also guarantees that f̂�(0) = I which is not automatically

guaranteed by equation (4).

Once the iterative process has converged the pose estimates f̂�(t) are optimal

in a least squares sense.

Kanatani [9] and later Pennec and Thirion [14] have discussed the estimation of

uncertainty in pose estimation. We follow the latter approach and obtain a 6 � 6

covariance matrix W�

f
(t) for the uncertainty in the pose estimate.
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6 Obtaining the centre of rotation

In this section we present an analytic solution for the joint centre. We propose that

this problem be formulated as a second least squares estimation problem that uses

the output of the �rst. The joint centre is estimated by minimising the objective

function

E[~c] =

Nt�1X
t=0

�
f0(t)~c� f1(t)~c

�2
(6)

Before continuing we change slightly the way that the coordinate transform is ex-

pressed. We de�ne ~p �(t) by

f�(t) � ~c = R�(t)~c+ ~d �(t) = R�(t) [~c� ~p �(t)] (7)

The objective may be expanded as

E[~c] =

Nt�1X
t=0

h�
~c� ~p 0(t)

�2
+
�
~c� ~p 1(t)

�2
� 2

�
~c� ~p 0(t)

�
>

R0(t)>R1(t)
�
~c� ~p 1(t)

�i
(8)

By applying @E=@~c = 0 we obtain the least squares estimate of the joint centre as

~c =

"
2NtI3 �

X
t

R0(t)>R1(t)�
X
t

R1(t)>R0(t)

#
�1

X
t

�
~p 0(t) + ~p 1(t)�R0(t)>R1(t)~p 1(t)�R1(t)>R0(t)~p 0(t)

�
(9)

We note that the matrix inversion in this equation may not be possible, signifying

that the joint centre may not be determined. A necessary condition to determine

a joint centre is that at least 3 time instants are considered and that the rotations

relative to t = 0 must be non-null and around di�erent axes. This will ensure that

the matrix is invertible.

7 Uncertainty Estimation

We wish to obtain an estimate of the uncertainty in the position of the joint centre.

To do so requires that we have some understanding of the errors in the inputs to the

computation, in this case the pose estimates. We have already seen that these errors

may be estimated as part of the segment pose computation. The computation of

the pose uncertainty is in turn based on knowledge of the uncertainty in the marker

positions.

Since we expect the pose errors to have non-trivial structure it is important to

take these errors into account during the joint estimation step. This provides some

di�culty in that rotations do not form a linear vector space, so that a covariancemay

not be de�ned unless one linearises about some point in pose space and works with

small rotational errors only. Pennec [14] gives a detailed and rigorous framework in

which to handle such uncertainties. In particular he draws attention to the fact that

the (small) errors must carefully be separated out from the (usually large) rotations

under investigation before the usual statistical averaging steps are performed.

In this section we simply sketch the computation in outline. We use the joint

constraint that states that (in the absence of noise)

0 = f0(t) � ~c� f1(t) � ~c (10)

Our measurements are the poses f�(t) which have covariance W�

f
(t). We wish to

estimate the joint centre ~c and its uncertainty Wc.
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The joint constraint may be viewed as an implicit measurement equation

h(xt; a) = 0 (11)

where we wish to solve for state vector a based on measurements xt. When dis-

cussing the non-linear least squares problem we introduce new symbols xt and yt
for the real and pseudo generalised measurements. These are distinct from ~x �

i
and

~y �

i
(t) as used earlier in the paper.

In the case of our problem we see that the following substitutions must be made.

Our measurement vector x̂t is the 12� 1 column vector consisting of two 6 element

poses f0(t); f1(t). The measurement vector has a 12� 12 covariance matrix

Wx;t =

�
W 0

f
(t) 0

0 W 1

f
(t)

�
(12)

This problem may be linearised as shown in the appendix and the solution for the

joint centre and its covariance is given by equations (22) and (23).

The following identi�cations must be made: The JacobianMt is given by a 3�3

matrix

Mt =
@h

@a
= R0(t)�R1(t) (13)

The other Jacobian that is needed is the 3� 12 matrix

@h

@xt
=

�
@R0

@r0
~c; I3;�

@R1

@r1
~c;�I3

�
(14)

Finally the 3� 1 pseudo-measurement is given by

ŷt = �~d
0 + ~d 1 (15)

It is necessary to iterate as the result depends on the linearisation point. We

initialise the iteration using the analytic computation of section 6.

8 Results

An experiment was performed with a 5 camera optical system. One of the authors

held by hand a two segment mechanical test rig on which the markers were mounted

and swung it like a pendulum making sure that over the 20 second time interval

the second segment moved around at least 2 of the axes.

The experiment was performed with a mechanical rig as the main focus of our

work is to determine what can be estimated for rigid objects. A subsequent inves-

tigation is necessary to look more closely at the e�ects of soft tissue movement on

the rigidity assumption.

A 20 second (1200 frame) data set of a 2 segment kinematic chain with 3 markers

per segment was acquired. In order to predict the uncertainty of the rotation centre

we need to supply an estimate of the uncertainty in the marker positions.

We assume that the marker errors are isotropic which is reasonable since the

cameras are separated by angles of the order of 90 degrees. To estimate the errors

we consider a pair of markers on a rigid segment well separated in distance d.
We de�ne the rms error as �d = E[(d � d)2]. Because this is a combination of

two measurements it is an estimate of twice the diagonal element of the marker

covariance matrix, i.e. 3�2
d
= 2Tr(Wy). We combined many pairs of measurements

to obtain an estimate of the marker covariance matrix from a value of �d = 1:4mm
and hence

p
trWy = 1:7mm.

We show the results in table 1. We repeat the computation for varying number

of frames. For each case we list the trace of the covariance of the joint position.
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Table 1: Tests of the uncertainty prediction for varying t

Nt

p
tr(Wc) (mm) v

4 1872.02 0.46

8 96.04 2.62

16 76.60 3.18

32 35.93 2.97

75 3.04 1.82

150 1.10 3.05

300 0.50 2.99

600 0.30 1.38

1200 0.20 -

For the full 20 second sequence it is estimated that we can predict the joint center

location to 0.20mm. As we decrease the number of frames two e�ects cause the

uncertainty in joint location to increase. Firstly there are fewer measurements being

used. Secondly the angular range begins to decrease. In the case of Nt = 4 only 0.07

seconds have elapsed and the angular range is very small causing an uncertainty of

1900mm.

Using the 1200 frame value for the joint centre as ground truth we have computed

a validation index for the smaller Nt cases. The validation index is based on the

Mahalanobis distance e and is de�ned as

v =

r
e

3
; e = (c� ctrue)

>W�1

c
(c� ctrue) (16)

The Mahalanobis distance is computed from the ground truth ctrue, the predicted
covarianceWc and the actual estimate c. The expected value of the validation index

for a number of trials is 1 if the covariance estimate is reliable.

In table 1 we show results for the validation index. We have used the 1200 frame

value for the joint centre as \ground truth" and computed the validation index for

shorter sequences. We justify this by arguing that the long frame value is clearly

very much more accurate than the short sequences.

The rows in the table are only partially statistically independent. The validation

index is a little high and future trials will investigate this. Overall it seems that the

covariance has very much the expected behaviour.

The �nal row suggests that a 20 second data sequence with markers accurate to

1:7mm rms can yield a joint centre accurate to 0:20mm rms, which is impressive in

comparison with other methods.

The individual sets of 3 markers were about 100-200mm apart and the two sets

were about 1m apart with the joint halfway between.

9 Conclusion

The problem of hip joint centre location using optical markers located on the skin

has been addressed. We have presented a novel computational technique which can

recover joint centre location and uncertainty based solely on the marker measure-

ments. We have presented preliminary results that suggest our accuracy estimates

are reasonable.

There are several issues that remain to be addressed. The algorithm described

is very close to optimal for Gaussian noise and no signi�cant improvements may

reasonably be expected in this framework. However when considering the problem
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of hip joint location soft tissue movement may be modelled by better noise models

that exploit likely systematic correlations. Work is in progress to extend the scheme

to address problems with larger numbers of segments.

A Solving non-linear least squares problems

In this appendix we present details of the approach to linearisation of the measure-

ment equations following the work of Pennec and Thirion [14].

We suppose that we have i = 0::Nc � 1 non-linear constraint equations

ht(xt; a) = 0; (17)

which depend on measurement vectors xt and a state vector a to be determined.

In the absence of noise the constraint is a strict equality, we use a hat (̂) to denote

noisy or estimated quantities.

The Taylor expansion of the constraint equations to �rst order about some

estimate of the state vector â and a noisy measurement x̂t is given by

�h(x̂t; â) +
@h

@a
â =

@h

@a
a+

@h

@xt
(xt � x̂t) (18)

yt = Mta+ wt (19)

In equation (19) we see that the �rst order equation may be converted to a conven-

tional linear estimation problem by appropriate de�nitions of the \pseudo-measurement"

yt and the Jacobian matrix Mt. The covariance of the noise on the pseudo mea-

surement yt is denoted Wy;t and is computed using the covariance of the noise on

the real noisy measurement x̂t from

Wy;t =
@h

@xt
Wx;t

@h

@xt

>

(20)

We seek the unbiased minimum variance estimate â. This is de�ned as the value

of a which has expectation value equal to the true value of a

E[â] = a (21)

for which the expectation value of the variance E[â>â] is a minimum.

The solution is given by the Gauss-Markov theorem [11]

â =

"X
t

M>

t
W�1

y;i
Mt

#
�1 "X

t

M>

t
W�1

y;i
yt

#
(22)

with covariance

Wa =

"X
t

M>

t
W�1

y;i
Mt

#
�1

(23)
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